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Introduction 

 

1.1 Regulation of  the Hypothalamic-Pituitary-Adrenal-axis 

The secretion of glucocorticoids (GCs) is regulated by the hypothalamus, which receives stimuli 

from the central nervous system 1.  In response to these stimuli (e.g. physical or psychological 

stress) neurons in the paraventricular nucleus of the hypothalamus secrete corticothopin 

releasing hormone (CRH) and its cosecretagogue vasopressin 2. As a result the pituitary is 

stimulated to secrete corticotropin (ACTH) 3, which is synthesized as part of a large precursor, 

pro-opiomelanocortin (POMC) 4. ACTH stimulates the adrenal glands to produce glucocorticoids. 

The major glucocorticoid in humans is cortisol. This cascade of the hypothalamus-pituitary-

adrenal (HPA) axis results in a diurnal profile of cortisol secretion with high levels in the 

morning and low concentrations in the afternoon and evening, with a small peak after lunch.  

Important in the regulation of the production of GCs is the negative feeedback action by 

GCs. GCs inhibit hormone synthesis and secretion both at the level of the hypothalamus and 

the pituitary. In the corticotropic cell, GCs have inhibitory effects on both POMC gene 

transcription and ACTH secretion 4. Also, GCs decrease CRH and AVP mRNA levels in the 

hypothalamic paraventricular nuclei 5-7. A third mechanism by which GCs exert a negative effect 

on their own production is blockade of the stimulatory effect of CRH on POMC gene 

transcription 4. Figure 1 shows a simplified model of the HPA axis. 

 

1.2 The effects of Glucocorticoids 

Cortisol has numerous effects throughout the human body, including the mediation of the 

stress response, regulation of lipid and glucose metabolism, immunosuppressive and anti-

inflammatory actions, vascular effects, increase of bone resorption, as well as effects on the 

development and function of numerous organs. Because of the suppressive effects on the 

immune system GCs are widely used in the treatment of diseases in which inflammation (e.g. 

inflammatory bowel disease) or the immune system (e.g. asthma, rheumatoid arthritis) play an 

important role, as well as in the prevention of rejection of organ transplants. When present in 

excess, due to endogenous overproduction (e.g. Cushing’s disease) or therapeutically 

administrated GCs, serious adverse effects can occur, as listed in table 1. Increased levels of 

cortisol, as a result of HPA axis overactivity, which is related to stress 8, has been associated 

with cognitive impairment and dementia 9, 10. Longitudinal studies in both Alzheimer’s disease 

(AD) patients and healthy elderly showed higher plasma cortisol levels leading to a more rapid 

decline in cognitive function over time 10-12. Increasing age has been shown to be associated 

with elevated evening cortisol levels in men 13, 14. An increased exposure of several tissues to 

glucocorticoids with aging, e.g., visceral fat cells, in combination with the reduction of the 

lipolytic effects of declining growth hormone levels, may contribute to the age-dependent 
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increase of visceral fat accumulation. In addition, HPA axis overactivity is related to an 

increased vascular risk, including hypertension and obesity 15, 16.  A well-known effect of 

glucocorticoids is to negatively influence body composition, including redistribution of body fat 

with deposition of adipose tissue on the abdomen and trunk, and muscle atrophy 17. Longterm 

exposure to high levels of glucocorticoids induces loss of muscle mass and inhibits growth 18, 19. 

It is known that body composition plays an important role in lipid metabolism and insulin 

sensitivity, and as a consequence influences the risk on cardiovascular disease 20.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A simplified overview of the regulation of GCs by the HPA-axis. Under the influence 

of stress (both physiological and psychological) and the circadian rhythm the hypothalamus 

secretes CRH and AVP into the hypophysial portal system and thereby stimulates the 

production of ACTH by the pituitary. In response to increased levels of ACTH the adrenal 

glands increase the secretion cortisol along with other adrenal steroids with mineralocorticoid 

and androgen activity. Cortisol inhibits its own production both at the hypothalamic and 

pituitary level and thereby completing a negative feedback loop. 
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1.3 Sensitivity to Glucocorticoids 

It is known, that the sensitivity to exogenous GCs is highly variable between patients. Some 

patients have excellent responses with respect to their diseases, but also suffer from severe 

adverse effects, while others need a very high dose to exert any therapeutical effect at all. 

When examined with a dexamethasone (DEX) suppression test a similar variability in the 

sensitivity to GCs between different normal individuals 21 is observed as well. However, within 

individuals GC sensitivity is rather stable. This suggests that, in humans, a setpoint for the 

sensitivity to DEX with respect to the feedback action exists, which might be genetically 

determined. An important factor in the cascade of GC action, also at the pituitary level, is 

binding to the GC receptor (GR). The GR belongs to the superfamily of nuclear receptors, which 

are present in the cytoplasm and act as transcription factors to regulate gene expression. After 

binding of cortisol, a conformational change occurs, which leads to dissociation of the receptor 

from a large complex of proteins of which heat shock protein 90 is the most important 22, 23. 

This activated ligand-bound receptor then translocates to the nucleus where it can act in 

several ways 24, as shown in figure 2. The GR can initiate transcription through binding to GC 

response elements of the target gene. The GR also can affect gene transcription through direct 

protein-protein interaction and can activate, as well as repress target gene expression 25 26 27. 

In mice, in which a mutation was induced which impaired dimerization and DNA-binding, it has 

been shown that these processes are not critical for survival 28. Previously, some rare mutations 

of the GR gene have been described (see Figure 3), which led to clinical signs and symptoms of 

generalized cortisol resistance 30. Due to these receptor defects, cortisol has impaired actions 

through the GR. As a consequence, the central negative feedback of GCs is diminished, GC 

production by the adrenal is increased. Cortisol binds with high affinity to the mineralocorticoid 

receptor 31. Symptomatology in patients with cortisol resistance are the consequence of a 

compensatory hyperactivity of the HPA-axis, which results in an overproduction of 

mineralocorticoids, which in turn lead to: hypertension, hypokalemic alkalosis, fatigue, and in 

females due to higher adrenal production of androgens, also hyperandrogenism.  In normal 

conditions, organs which have an important mineralocorticoid function are protected from high 

cortisol levels by the enzyme 11β-hydroxysteroid dehydrogenase type II (11β-HSD II), which 

rapidly inactivates cortisol in to cortisone. In the case of cortisol resistance, cortisol levels are 

too high for the inactivational capacity of this enzyme. The number of patients diagnosed with 

cortisol resistance syndrome until now is low (in about 10 patients) 32-39. Also, two mutations 

were found in vitro, which could have been preexisting acquired mutations in vivo, which lead 

to Nelson syndrome and lupus nephritis 40, 41. Most patients carried a mutation or defect in the 

ligand-binding domain and just one patient had a mutation in the DNA-binding domain 42. A 

possible explanation for the low number of patients is that a severe form of cortisol resistance 

is not compatible with life. 
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Table 1:  Major side effects associated with glucocorticoid therapy 

Major side effects associated with Glucocorticoid Therapy 

Dermatologic and soft tissue Renal 

Skin thinning and purpura Hypokalemia 

Cushingoid appearance Fluid volume shifts 

Alopecia Genitourinary and reproductive 

Acne Amenorrhea/ infertility 

Hirsutism Intrauterine growth retardation 

Striae Bone 

Hypertrichosis Osteoporosis 

Eye Avascular necrosis 

Posterior subcapsular cataract Muscle 

Elevated intraocular pressure/glaucoma Myopathy 

Exophthalmos Neuropsychiatric 

Cardiovascular Euphoria 

Hypertension Dysphoria/ depression 

Perturbations of serum lipoproteins Insomnia 

Premature atherosclerotic disease Psychosis 

Gastrointestinal Endocrine 

Gastritis Diabetes mellitus 

Peptic ulcer disease HPA insufficiency 

Pancreatitis Infectious disease 

Steatosis hepatis Increased risk of typical infections 

Visceral perforation Opportunistic infections 

HPA, hypothalamic-pituitary-adrenal  
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Figure 2 (adapted from Reichardt and Schütz 29): The first step leading to induction of gene 

expression by GCs is binding of the hormone to the receptor. Since cortisol is lipophilic it is 

thought to enter the cell by passive diffusion. After binding the hsp-complex dissociates, hsp 90 

is released and the domains responsible for nuclear localisation, DNA binding and 

transactivation are unmasked. The receptor becomes hyperphosphorylated and forms 

homodimers  (as result of  the interaction of dimerization sequences present in the ligand and 

DNA binding domains.) GR molecules translocate to the nucleus. Inside the nucleus  the 

activated GR-dimers can act in several ways.  

A. the first way represents the classical model for GR action: the receptor homodimer binds 

to short, palindromically arranged DNA sequences in the promotor region of the GC 

responsive genes, which are called GC responsive elements (GREs). The receptor 

homodimers bind to DNA using their zinc fingers. These structures of the DNA binding 

domains form a finger-like loop structure of 12 amino-acids, which interact with the coils 

of the DNA double helix. When bound to the GRE, the receptor homodimer can interact 

with the basic transcription cascade in several ways. One possibility is a direct interaction 

via contact between the GR transactivation domains and transcription factors. 

Furthermore, binding of the GR homodimer to the GRE can induce a chromatin structure 
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rearrangement allowing other transcription factors to bind to the previously inaccessable 

DNA.  

B. In some promoters, POMC is a prototype example, binding of the activated GR to the GRE 

induces transcription inhibition, rather than activation. These GREs therefore are called 

negative GREs (nGRE). 

C. Another way to function is through direct protein-protein interaction. These genes are 

positively regulated by activating protein 1 (AP-1), which is a transcription factor that 

consists of dimers of the Fos and Jun protein family. GR probably interacts directly with 

AP-1 and prevents its activating action.  

A similar pattern has been reported for the transcription factor nuclear factor κ B (NF-κB). 

The GR mediated transrepression of NF-κ B is caused by interaction with one of the 

subunits of NF- κB. 

D. Another direct protein protein action is exerted by interaction of GR with Stat 5 which 

positively regulates transcription 

 

Hypersensitivity to endogenous cortisol has been described as well: Iida et al reported a patient 

with symptoms of Cushing's syndrome, despite hypocortisolemia 43. More recently, Newfield et 

al described a second patient with serious symptoms of Cushing’s syndrome at peripubertal 

age, but normal cortisol levels 44. The lymphocytes of this second patient contained an 

increased number of GR per cell with normal binding affinity. The molecular etiology of 

hyperreactivity to cortisol has not been fully clarified yet. Figure 3 shows a schematic overview 

of the GR gene and the locations of the previously described mutations causing cortisol 

resistance, and polymorphisms which have been shown to be associated with an altered 

sensitivity to GCs. In contrast to the infrequent mutations, the majority of polymorphisms are 

located in the N-terminal transactivation domain 45. This thesis deals with GR gene 

polymorphisms, which were not only associated with differences in GC sensitivity, but as a 

result also were related to differences in body composition and metabolic parameters. 

 

 

1.4  Polymorphisms of the Glucocorticoid Receptor Gene 

 
The N363S Polymorphism of the GR gene 
Previously, a polymorphism was identified in codon 363 of exon 2 of the GR gene (Figure 3). 

Table 2 shows an overview of the associations with body mass index and metabolic parameters 

found with this polymorphism so far. This AAT to AGT nucleotide change results in an 

asparagine to serine amino acid change and appeared in a group of 216 normal Dutch elderly 

individuals to be associated with a higher sensitivity to GCs in vivo 46, 47. This was shown by 
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lower cortisol levels after the administration of 0.25 mg DEX, as well as a significantly greater 

decrease in cortisol levels. Moreover, in this population N363S-carriers also had an increased 

insulin response to exogenous DEX, which is likely to be directly related to their increased GC 

sensitivity. In addition, N363S-carriers had a higher body mass index (BMI), and a tendency 

towards decreased bone mineral density in trabecular bone 47, 48. Lin et al confirmed the 

association with BMI, and even demonstrated an allele-dosage effect on BMI (homozygous S-

allele carriers had a higher BMI than heterozygous S-allele carriers) 48. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3: Schematic overview of the GR gene, showing polymorphisms (black arrows) and 

their locations, nucleotide and/or amino acid substitutions and frequencies. 

 

However, thereafter some controversy arose concerning the role of this polymorphism, as 

recently reviewed by Rosmond 49. Dobson et al found an increased waist-to-hip ratio in male 

N363S-carriers, but no associations with BMI, serum lipid levels and glucose tolerance status in 

a Caucasian population 50. In three other reports no association was observed between the 

N363S polymorphism and BMI either 51-53. In a recent report of Lin et al the N363S variant was 

associated with coronary artery disease independent of weight 54. The frequency of the 363S-

allele was in particular high in patients with angina pectoris. In this population of Anglo-Celtic 

descent, also several risk factors of atherosclerosis were associated with the N363S variant: 

increased cholesterol and triglyceride concentrations, as well as an increased total 

GLUCOCORTICOID RECEPTOR (GR) GENE

Codon/ site

9α 9β

TGA TGA TGA

3 4 5 6 7 8

Substitution

Frequency (%)
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C
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22/23       363
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9             6
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cholesterol/HDL-cholesterol ratio. Recently, the same authors showed again an association 

between  the N363S polymorphism and obesity, as well as overweight in several groups of 

patients 55. 

 

Table 2:  Data from 8 studies that investigated the association between the N363S 

polymorphism of the GR gene and body mass index 
 

Reference Population Associations with the N363S 

polymorphism 
 

Huizenga et al, 1998  47 

 

 

216 Dutch men and 

women 

 

Increased GC sensitivity , increased 

insulin response to DEX, increased BMI 

 

Lin et al, 1999  48 195 normotensive controls 

and 124 hypertensive 

subjects 

 

Increased BMI, allele-dosage effect 

Halsall et al, 2000 53 491 subjects 

 

No association with BMI 

Dobson et al, 2001 50 135 men and 240 women 

 

Increased WHR in men 

Rosmond etal, 2001 52 284 Swedish men  No association with BMI 

No association with sensitivity to GCs 

 

Echwald et al, 2001 51 741 obese Danish men 

and 854 non-obese 

controls 

No association with BMI, WHR or weight 

gain 

 

Lin et al, 2003 54 437 Anglo-Celtic CAD 

patients and 302 controls 

Association with CAD, elevated 

cholesterol, triglycerides, total 

cholesterol/HDL ratio 

 

Lin et al, 2003 55 951 Anglo-Celtic/Northern 

Europe subjects: 152 

obese, 356 type 2 

diabetes, 141 

hypertensive, 302 controls 

Association with obesity and overweight 

in several patient settings, but no 

association with hypertension or type 2 

diabetes 

 

BMI, body mass index, CAD, coronary artery disease, DEX, dexamethasone, GC, glucocorticoid, 

HDL, high density lipoprotein -cholesterol , WHR, waist-to-hip ratio 
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However, no association was found with hypertension or type 2 diabetes. Interestingly, in a 

Japanese, as well as in a Chinese population the N363S variant did not occur 56, 57. In this thesis 

we studied whether the N363S variant is associated with BMI and cholesterol levels in an 

Italian severely obese population.  In addition, we investigated the combined effects of carrying 

both the N363S and the BclI polymorphisms in these obese patients. 

 

The BclI Polymorphism of the GR gene 
Murray et al reported an intronic RFLP of the GR gene, which was described as consisting of a 

short fragment of 2.3 kb and a large fragment of 4.5 kb 58. Since then, several association 

studies were performed to investigate the role of this variant in obesity using the terminology 

and technique Murray used. We investigated the exact nucleotide alteration. Table 3 shows an 

overview of the reports sofar of the BclI polymorphism and its associations with body 

composition and metabolic parameters. The first association study of the BclI polymorphism 

which was decribed by Weaver et al, showed no differences in frequency of the BclI 

polymorphism between an obese and a normal-weight population 59. However, within the 

obese group,  homozygous G-allele (4.5 kb) carriers had higher insulin levels and were more 

insulin resistant when compared to a group consisting of CC (homozygous 2.3 kb) and CG 

(2.3/4.5 kb)-carriers. In a report of Panarelli et al no association between the G-allele and BMI 

was described either 62. However, increased skin vasoconstriction was observed in homozygous 

G-allele carriers after injection with budesonide, a synthetic GC, which suggests increased in 

vivo sensitivity to GCs. In contrast, in this study it was shown the in vitro affinity and sensitivity 

of leucocytes to dexamethasone tended to be lower. Although these findings were not 

statistically significant, it suggests that this polymorphism might have tissue-specific effects. 

Three other reports, all in middle-aged individuals, showed an association of the BclI 

polymorphism with abdominal visceral obesity, but not with general obesity 63, 64, 66 GCs are 

known to induce central obesity, as is observed in Cushing’s disease. Sofar, it is not known 

whether this polymorphism is also associated with other features of Cushing’s syndrome e.g. 

easy bruisability. However, the relationship between abdominal obesity and the BclI 

polymorphism suggests a greater effect of GCs due to alterations at the level of the GR, in 

particular in visceral fat.  

In an experiment of 100 days which was conducted with 12 pairs of monozygotic 

twins at young adult age, the effects of the BclI variant were studied in relation to body 

composition and metabolic changes in response to overfeeding 65. In this study no homozygous 

G-allele carriers were found. In contrast with the findings of the above discussed reports, CC-

carriers experienced a greater increase in body weight, visceral fat and cholesterol levels after 

overfeeding than CG-carriers. However, another study in adolescents showed in female 

heterozygous CG-allele carriers a greater  increase in subcutaneous fat, as measured by 
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skinfolds, when compared to both homozygous CC- and GG-carriers during a 12 years follow-up 

period 67. No differences were found in baseline or post follow-up subcutaneous fat mass, or in 

total fat mass or, importantly, trunk fat mass. The authors speculated that one mutated allele 

could have a different effect than two mutated alleles. In the latter state an alternative 

pathway might be switched on to compensate for changes resulting from two polymorphic 

alleles. As these authors refer to, mechanisms supporting this theory, have indeed been 

reported in mice models involving the cyclooxygenase-2 and the glucose transporter-4 genes 68 
69.  It is known that body composition changes during the normal aging process, including 

increased sarcopenia. In this thesis we identified the exact sequence alteration of the BclI 

polymorphism and describe the effects of this variant on GC sensitivity as well as the effects on 

body composition and bone mineral density at older age. 
 

 
The ER22/23EK Polymorphism of the GR gene 

In a previous report a polymorphism, consisting of 2 linked single nucleotide mutations in 

codons 22 and 23 (exon 2 of the GR gene, figure 3) was described 46. The first mutation in 

codon 22 did not result in an amino acid change (GAG to GAA, both coding for a glutamic acid 

(E)), but the mutation in codon 23 (AGG to AAG) causes a change from arginine (R) to lysine 

(K). We investigated the effects of this polymorphism on GC sensitivity  using a dexamethasone 

suppression test of 0.25 mg and of 1 mg, as well as the effects on insulin and lipid status. We 

extended these studies to investigate a possible relation to predictors of mortality (C-reactive 

protein and interleukin-6) and studied survival in a population of elderly men. To investigate 

whether this GR variant is also associated with changes during puberty, we studied the effects 

on well-defined measures as anthropometric parameters, body composition and muscle 

strength at young age. 

It is known that GCs influence important brain structures and a correct level of cortisol 

is critical for many cerebral functions. In humans it has been shown that high cortisol levels 

resulted in a decreased hippocampal formation volume, and memory impairment 70 71. Also, 

disturbances in the hypothalamic-pituitary-adrenal axis have been found to be related to 

dementia disorders 72 73 74 In a large population-based study in the elderly we studied whether 

the ER22/23EK polymorphism was associated with hippocampal volume, dementia and white 

matter lesions.  

 

The TthIIII Polymorphism of the GR gene 

In the promoter region of the GR gene a TthIIII RFLP was previously reported by Detera-

Wadleigh et al 75 (Figure 3). Rosmond et al showed an association of this polymorphism with 

elevated diurnal cortisol levels in a population of 284 Swedish men 76. No relationships were 
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found between the TthIIII variant and anthropometry, glucose and insulin metabolism or lipid 

spectrum. In this thesis we characterized the exact location of the nucleotide change. In the 

same subpopulation of the Rotterdam Study in which we studied the relationship between the 

three other polymorphisms described in this thesis and feedback sensitivity to GCs, we 

investigated whether there was an association between the TthIIII polymorphism and GC 

sensitivity, insulin and lipid metabolism and anthropometric parameters. 

 

The exon 9 beta Polymorphism of the GR gene 

The GR gene consists of 10 exons. Exons 1-9α are transcribed to GRα mRNA, which is 

translated to the functional GRα. To a small extent alternative splicing of the primary transcript 

occurs, which results in an mRNA consisting of exons 1 to 9β, which is translated to GRβ 77, 78. 

This alternate protein GRβ does not bind ligand and is not transcriptionally active. It has been 

shown that in vitro this GRβ can function as a dominant negative inhibitor of the active GRα 79, 

80. However, these findings remain controversial, since several other studies could not 

reproduce these results 81-83.  

Previously, DeRijk et al reported an A to G substitution in an  “ATTTA motif“  in exon 

9β of the GR gene 84. This variable ATTTA (to GTTTA) sequence is located in a region encoding 

the 3‘ untranslated region (UTR) of the GRβ mRNA. A stabilizing effect of this polymorphism on 

the GRβ mRNA was observed.84. In the same study an association between this exon 9β 

polymorphism and rheumatoid arthritis was found. As suggested by DeRijk et al this 

polymorphism could result in an increased expression and stability of GRβ in vivo, and 

consequently lead to glucocorticoid resistance in rheumatoid arthritis patients. 

 

1.5 The Hypothalamo-Pituitary-Adrenal Axis and Depression  

Another topic we address in this thesis is depression. Hyperactivity of the hypothalamic-

pituitary adrenal (HPA)-axis seems to be important in the pathogenesis of depression. The 

normalization of the HPA-axis is a necessary predecessor of clinical response to antidepressant 

therapy 85. An impaired signaling pathway via glucocorticoid receptors (GR), leading to an 

impaired negative feedback regulation and thus to partial glucocorticoid resistance appears to 

cause this hyperactivity. In depressed patients this is reflected by a basal hypercortisolemia and 

cortisol escape from dexamethasone suppression 86, as well as an increased ACTH and cortisol 

release in the combined dexamethasone suppression/CRH-stimulation test (Dex-CRH test) 87-89. 

On the other hand, increased GR activation may also promote depressive symptoms. 

In Cushing’s disease, characterized by severely increased cortisol levels, symptoms of 

depression frequently occur 90. In addition, glucocorticoids exert a positive feedback on CRH 

expression in limbic regions such the amygdala 91, 92. Increased CRH neurotransmission in 

limbic regions has been associated with increased depression-like symptomatology 92. 
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Therefore, not only glucocorticoid resistance seems to be related to depression, but also 

enhanced GR effects in limbic brain regions may contribute to the development of depression.  

 There are data suggesting that HPA-axis hyperactivity is a heritable trait, since 

mentally healthy first-degree relatives of depressive patients also show an increased reactivity 

of the HPA-axis in response to the Dex-CRH test 93, 94.  Genetic factors leading to an altered GR 

sensitivity may therefore alter the susceptibility to depression and the response to 

antidepressant drugs. In addition, functional variants in the GR gene are also likely to affect the 

outcome of neuroendocrine tests, such as the Dex-CRH test, and neuropsychological tests in 

depressed patients. In this thesis we investigated the role of GR polymorphisms in depression. 

 

1.6 Aims of this thesis 

A considerable variability in the response to both exogenous as well as to endogenous GCs 

exists between normal individuals. We investigated the role of polymorphisms of the GR gene 

(ER22/23EK, N363S, BclI, TthIII) in this variability in sensitivity to GCs using a dexamethasone 

suppression test of 1 mg and of 0.25 mg. In addition, we studied the effects of these genetic 

GR variants on metabolism: lipid levels, insulin sensitivity and markers of inflammation 

(interleukin-6 and C-reactive protein), which seem to be involved in the process of 

atherosclerosis 95. It is known that body composition plays an important role in lipid metabolism 

and insulin sensitivity, and as a consequence influences the risk on cardiovascular disease 20. A 

well-known effect of glucocorticoids is to negatively influence body composition, including 

redistribution of body fat with deposition of adipose tissue on the abdomen and trunk, and 

muscle atrophy 17. In this thesis we also studied the effects of the GR polymorphisms on body 

composition, height and muscle strength. 

HPA axis overactivity, which is related to stress leads to increased levels of cortisol 8, 

and has been associated with cognitive impairment and dementia 9, 10. In this thesis we studied 

whether the ER22/23EK polymorphism was associated with hippocampal volume, cognive 

impairment and dementia, as well as cerebral white matter lesions. Hyperactivity of the HPA-

axis seems also to be important in the pathogenesis of depression. A predecessor of clinical 

response to antidepressant therapy is the normalization of the HPA-axis 85. An impaired 

negative feedback regulation and thus a partial glucocorticoid resistance appears to cause this 

hyperactivity, which might be partially genetically determined 93, 94. Genetic polymorphisms 

leading to a alterered GR sensitivity may therefore alter the susceptibility to depression and the 

response to antidepressant drugs. In this thesis we investigated whether GR polymorphisms 

are associated with major depression, as well as outcomes of neuroendocrine tests, such as the 

Dex-CRH test, and neuropsychological tests in depressed patients, and the response to 

antidepressant treatment. In the general discussion limitations of polymorphism studies, as well 
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as the associations between GR polymorphisms and these measures of GC sensitivity, body 

composition, metabolism, cognition, brain structures and depression are discussed. 
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Abstract 
 

Objective: Sensitivity to glucocorticoids differs between individuals, partially due to genetic 

variation in the glucocorticoid receptor (GR) gene. We studied the sequence alteration of a 

previously described intronic BclI polymorphism of the GR gene, and investigated whether 

there was an association with sensitivity to glucocorticoids and anthropometric parameters in a 

group of healthy elderly individuals. Design and measurements: in study group 1, two 

overnight dexamethasone suppression tests (DSTs) were performed: with 1 mg 

dexamethasone, and 2.5 years later with 0.25 mg dexamethasone. Anthropometric parameters 

were measured in a larger population (study group 2) , as well as in a third study group, in 

which we also measured body composition by DEXA scans. Subjects: group 1 and 2: 

respectively 191 and 1963 male and female participants of the Rotterdam study, a population-

based study in Dutch elderly. Study group 3:  370 elderly males (mean age 77.8 ± 0.2 yrs) 

from Zoetermeer, The Netherlands. Results: we identified the BclI restriction site polymorphism 

as a C/G substitution in intron 2, 646 nucleotides downstream from exon 2. After both 1 mg 

and 0.25 mg DST, heterozygous (CG) and homozygous G-allele carriers (GG) had lower cortisol 

levels than CC-carriers (p=0.01, p=0.02, respectively). In study group 2 we found a lower BMI 

(p=0.006) and WHR (p=0.02) in G-allele carriers. In study group 3, again we found a lower 

BMI (p=0.05) in G-allele carriers. No differences were found in fat mass. However, lean mass 

tended to be lower in G-allele carriers (p=0.07). Conclusions: we characterized a BclI-RFLP of 

the GR gene as a C/G polymorphism in intron 2 of which the G-allele was associated with 

hypersensitivity to glucocorticoids. This resulted in a lower BMI in older individuals in general, 

while our study in elderly males suggests that the lower BMI is probably due to a greater loss 

of lean mass during the ageing process.  
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Introduction 

 

Sensitivity to endogenous or exogenous glucocorticoids (GCs), hormones with important 

regulatory effects throughout the human body, is known to show a large interindividual 

variation 1. The effects of the GCs are mediated via the glucocorticoid receptor (GR). Clinically, 

some patients appear more sensitive to the therapeutic administration of GCs than others. The 

molecular etiology of cortisol hyperreactivity has not been fully clarified yet, but a single 

nucleotide polymorphism of the GR gene in codon 363, resulting in an asparagine to serine 

amino acid change is associated with a higher sensitivity to GCs in vivo 2, 3. The S-allele of the 

N363S polymorphism has been associated with a higher body mass index (BMI), increased 

cardiovascular risk, increased insulin response to exogenous dexamethasone (DEX) and a 

tendency towards decreased bone mineral density in trabecular bone 3, 4. However, the role of 

this polymorphism is still controversial, as recently reviewed  5.  

Another variant of the GR gene, a BclI restriction fragment length polymorphism 

(RFLP) presumably located in intron 2 6, 7 was described by Murray et al. The 4.5-kb fragment 

was found to be associated with abdominal obesity, higher systolic blood pressure, as well as 

elevated cortisol concentrations after a standardized lunch, but no association with respect to 

the response to a 0.5 mg dexamthasone suppression test. 6, 8, 9. In a group of young adult 

males, this polymorphism was associated with an increased reaction to a skin vasocontriction 

test with budesonide, but not with differences in blood pressure or in in vitro experiments 

concerning the affinity and concentration of GR in leucocytes 10. Furthermore, Weaver et al 

reported that premenopausal obese women that were homozygous for the 4.5 kb allele had 

increased fasting insulin levels and a higher insulin-resistance index 11. The frequency.of the 

4.5 kb allele, however,  was not different between these obese women and a normal-weight 

control group. Another study in 12 pairs of identical twins showed that homozygous carriers of 

the 2.3 kb allele increased more in body weight, abdominal fat mass and cholesterol levels after 

a period of overfeeding when compared to heterozygous 2.3/4.5 kb allele carriers 12. All these 

studies were performed in young or middle-aged populations. It is unknown whether there is 

an effect of the BclI polymorphism at older age. In addition, at present it remains unclear what 

the effects of this polymorphism on sensitivity to GCs are. Furthermore, most results from other 

studies are from relatively small sample-sizes, probably because the exact mutation was not 

known and the method of Southern blotting is rather labour-intensive. 

 In the present study we identified the sequence alteration detected as the BclI RFLP 

and we present evidence that the G-allele of this BclI polymorphism is associated with 

hypersensitivity to GCs and differences in body composition.  
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Methods and subjects 

 

Subjects  

Study group 1: for the cortisol and insulin measurements, a total of 191 subjects were 

randomly selected from the Rotterdam Study, a population-based cohort study (7983 subjects) 

in a suburb of Rotterdam, The Netherlands, in whom the determinants of chronic disabling 

diseases in the elderly are studied 3. Subjects with acute, psychiatric or endocrine diseases, 

including diabetes mellitus treated with medication, were not invited. Three subjects were 

taking estrogen-containing medication and were excluded from the analysis because of the 

significant effect on corticosteroid globulin and therefore on cortisol. In one male subject no 

dexamethasone (DEX) was measurable, suggesting that he had not taken the 1 mg DEX tablet, 

therefore he was excluded as well. Age in this study group varied between 53 and 82 (91 men 

and 100 women with mean ages of 67.7 ± 0.6 and 65.9 ± 0.6 years, respectively). In order to 

get more information about the individual variability of the feedback sensitivity of the 

hypothalamo-pituitary-adrenal (HPA)- axis, the 191 subjects, who underwent a 1 mg 

dexamethasone suppression test (DST), were invited again two and a half years later for a 

second DST with a lower dose of DEX (0.25 mg). 143 (74.1%) subjects agreed to participate in 

this second test (67 men and 76 women). 

Study group 2: Anthropometric parameters and bone mineral density were studied in a group 

of 1963 participants of the Rotterdam study. For this study group we included independently 

living subjects, who were excluded according to the following criteria: use of a walking aid, 

known diabetes mellitus type II, age over 80 years and use of thyroid hormone, 

chemotherapeutic drugs, or diuretics. Their age varied between 55 and 80 years (933 men and 

1030 women with mean ages of 67.3 ± 0.2 and 67.2 ± 0.2 years, respectively). 

Study group 3: Body composition was studied in more detail in a group of 370 indepently living 

men, aged 73 yr or older. Participants were recruited by a letter of invitation, which were sent 

to the oldest male inhabitants of Zoetermeer, a medium-sized town in the Netherlands. 

Subjects were judged sufficiently healthy to participate in the study if they were physically and 

mentally able to visit the study center independently. No additional health-related eligibility 

criteria were used.  All subjects gave their written informed consent to participate in the study 

which received the approval of the Medical Ethics Committee of the Erasmus MC. 

Anthropometric Measurements  Body weight, height and waist to hip ratio of the subjects were 

measured, and the body mass index (BMI, kg/m2) was calculated. Blood pressure was 

measured in sitting position at the right upper arm with a random-zero sphygmomanometer.  

Body composition Measurements Total fat mass, trunk fat mass and lean body mass were 

measured in study group 3 using dual energy x-ray absorptiometry (DEXA, Lunar Corp., 

Madison, WI) 13. Quality assurance for DEXA, including calibration, was performed routinely 

every morning, using the standard provided by the manufacturer. 
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Bone mineral density  Bone mineral density (BMD) measurements were performed by DEXA, 

using a DPX-L densitometer (Lunar Radiation Corporation, Madison, WI, USA). Standard 

positioning was used with anterior- posterior scans of the lumbar spine and the right proximal 

femur. In cases of a history of hip fracture or prothesis implantation, the left femur was 

scanned. Using standard software the vertebrae L2 to L4 and at the proximal femur, the 

femoral neck, and the greater trochanter were analysed. Quality assurance included calibration 

with the standard of the machine, and was performed routinely every morning. The in vivo 

coefficient of variation for the BMD measurements was 0.9% in the lumbar spine, 3.2 % in the 

femoral neck, and 2.5 % in the greater trochanter 14. 

Dexamethasone suppression tests  The two dexamethasone suppression tests (DST) were 

performed as described previously 15. In brief, venous blood was obtained between 8 and 9 am 

after an overnight fast for serum cortisol and insulin measurements. Participants were 

instructed to ingest a tablet of 1 mg  (or 0.25 mg for the second DST) DEX at 11.00 pm. The 

next morning fasting blood was drawn by venapuncture at the same time as the previous 

morning. To check for compliance and possible abnormalities in the metabolism of DEX, the 

DEX concentration was also measured by a radioimmunoassay. 

Hormonal Measurements Serum cortisol concentrations were determined using RIA-kits 

obtained from Diagnostics Products Corporation (Los Angeles, CA). Intra- and interassay 

variations were below 8.0 % and 9.5 % respectively. Circulating insulin concentrations were 

measured using commercially available radioimmunoassay (Medgenix Diagnostics, Brussels, 

Belgium). Intra- and interassay variations were 8.0 % and 13.7 % respectively.  

Sequencing analysis  A BclI recognition site possibly involved in the BclI RFLP 7 was identified in 

Genbank sequence NT_030707. A fragment including this site was PCR amplified from 10 

random DNA samples using the primers 5’-GCTCACAGGGTTCTTGCCATA-3’ (forward) and 5’-

TTGCACCATGTTGACACCAAT-3’ (reverse). The PCR fragments were digested with BclI enzyme 

(New England Biolabs Ltd, UK) and analyzed on agarose gels. The BclI site was indeed found to 

be polymorphic. Subsequently, the sequence of the fragments was analyzed: purified PCR 

products were sequenced on a ABI Prism 310 Genetic Analyzer, using a BigDyeTM Terminator 

Cycle Sequencing Ready Reaction DNA sequencing kit (Applied Biosystems, Nieuwerkerk aan 

den IJssel, Netherlands) according to manufacturer’s protocol. 

Genetic analysis  DNA of the 191 persons in the first study group and of the 370 subjects of the 

third study group was  extracted from samples of peripheral venous blood according to 

standard procedures. Genotyping was performed by allelic discrimination using TaqMan 

Universal PCR master mix (Applied Biosystems, Nieuwerkerk aan den IJssel, Netherlands), 

primers (see primers described above) and MGB-probes (Applied Biosystems) and a Taqman 

ABI Prism 7700 Sequence Detection System (Applied Biosystems). Used probes were 5’-FAM-

TCTGCTGATCAATCT -3’ and 5’-VIC- TCTGCTGATGAATCT - 3’ (Applied Biosystems). Reaction 

components and amplification parameters were based on the manufacturer’s instructions using 
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an annealing temperature of 60° C and optimized concentrations for primers and probes of 400 

nmol/L and 50 nmol/L, respectively. We re-analysed genotypes in 18 samples by PCR-RFLP 

analysis using the BclI restriction enzyme and a digestion of 1 hour at 37 °C and found identical 

genotypes. The extracted DNA of the second study group of 1963 subjects was used to amplify 

the polymorphic region with PCR, which was carried out in a 10 µl reaction volume containing 5 

ng of genomic DNA, 1.5 mM magnesium chloride, 0.2 mM of each deoxy-NTP, 200 nM of each 

primer (see above), 0.1 unit of Taq polymerase (Promega) and 10x PCR buffer (Promega). The 

PCR reactions were performed in a 384-wells thermocycler (MJ Research Tetrad).  The 

genotypes were detected by the Single Base Extension (SBE) procedure using the following SBE 

primer: 5’- TTTTTTTTTTAAAGTAGACAAGTTATGTCTGCTGAT-3’.  The SBE reactions were 

performed according to details provided by the manufacturer (ABI Prism SnaPshotTM Multiplex 

Kit) with slight modifications.  The genotypes thus generated were analyzed with the software 

program Genotyper 3.7 (Applied Biosystems, Nieuwerkerk aan den IJssel, Netherlands ) and 

also checked by eye.  To confirm the accuracy of the genotyping, 150 randomly selected 

samples were genotyped for a second time with the same method.  No discrepancies were 

found.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: First three exons of the Glucocorticoid Receptor gene. Localization of the BclI-

restriction sites. The position of the variable BclI restriction site is indicated by C/G, 646 bp 

downstream from exon 2. Bp, basepairs. 

 

Statistical analysis  Data were analyzed using SPSS for Windows, release 10.1 (SPSS, Chicago, 

IL). Logarithmic transformations were applied to normalize variables if necessary and to 

minimize the influence of outliers. Association of the G-allele of the BclI polymorphism with 
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continuous variables was tested by linear regression analysis and adjusted for age and, if 

necessary, for sex and BMI. Bonferroni post hoc tests were used to test for differences 

between each genotype and to correct for multiple comparisons. To test for differences 

between categorized variables and genotypes Pearson Chi square test was used. Results are 

reported as means ± SE. P values are two-sided throughout, and a p < 0.05 was considered to 

indicate a significant difference. 

 

Results 
 
Identification of BclI polymorphism  
We have identified a previously described BclI restriction fragment length polymorphism as a 

C/G single nucleotide polymorphism in intron 2 of the GR gene, 646 nucleotides downstream 

from exon 2 (figure 1). In previous studies 6, 9-12, 16, the BclI RFLP was detected by Southern 

blotting of BclI -digested total genomic DNA. The RFLP was assumed to be caused by a 

polymorphic BclI -site in intron 2 of the GR gene 6, 7. From the published sequence (GenBank 

NT_030707) we identified three BclI sites around exon 2 of the GR gene, located 392 bp 

upstream of exon 2, 646 bp downstream of exon 2 and 2301 bp downsteam of exon 2, 

respectively. PCR-RFLP and sequence analysis showed that the second site (646 bp 

downstream of exon 2) was indeed polymorphic (TGATCA  TGATGA), and we observed allelic 

frequencies similar to those reported previously for the BclI polymorphism. The fragment sizes 

expected (3.9 kb and 2.2 kb) were slightly different from those reported in the literature (4.5 

kb and 2.3 kb) 7.  

 

Functional studies in vivo 
In study group 1, we found 79 CC-carriers (41.4 %), 91 CG-carriers (47.6 %) and 21 GG-

carriers (11.0 %). Sexes were equally represented in the three genotype groups. Genotype 

distributions (Table 1) did not differ from those expected under Hardy-Weinberg equilibrium 

(HWE) conditions. Mean age and BMI of this subgroup are shown in table 1. At the second 

examination after 2.5 years, 58 of the 143 participants were homozygous C-allele carriers, 68 

were heterozygous and 17 were homozygous for the G-allele. Also in these groups sexes were 

equally represented.  

At baseline no differences in the early morning serum cortisol concentrations were 

found between genotype groups (p=0.31). However, after administration of 1 mg DEX, cortisol 

concentrations were lower in an allele-dosage way in heterozygous and homozygous G-allele 

carriers (p=0.18 and p=0.01, respectively), when compared to CC-carriers (ptrend=0.011, figure 

2 A). The actual DEX concentrations did not differ in the three groups (p=0.69), so the 

differences in response to cortisol were not due to differences in DEX concentrations or 

metabolism. 
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Table 1: Description of the study populations 

Study group (N)  1 (191) 2 (1963) 3 (370) 

 Mean  SE Mean  SE Mean  SE 

Age   (yrs) 66.9 0.4 67.2 0.2 77.8 0.2 

Males/ Females 92/ 99  933/ 1030  370/ 0  

BMI  (kg/m2) 26.2 0.3 25.8 0.1 25.4 0.2 

SBP (mmHg) 139.4 1.4 137.6 0.5 156.3 1.2 

DBP (mmHg) 74.9 0.7 73.7 0.3 83.9 0.6 

       

Allele frequenties       

C-allele 65 %  62 %  67 %  

G-allele 35 %  38 %  33 %  

SE, Standard Error of the mean, BMI, body mass index, SBP, systolic bloodpressure, DBP, 

diastolic bloodpressure. 

 

Two and half years later a low dose DST was performed and again there were no differences in 

fasting cortisol concentrations (p=0.39). The cortisol concentrations after the administration of 

0.25 mg DEX, however, showed a same allele-dosage effect as after 1 mg DEX (ptrend = 0.017, 

figure 2 B). Heterozygous CG-carriers, as well as the GG-carriers had lower postDEX levels 

when compared to CC-carriers (p=0.032 and p=0.055, respectively). Again, these differences 

were not due to differences in DEX concentrations (p=0.96), so this suggests that G-allele 

carriers are more sensitive to DEX. We did not find any differences in fasting insulin 

concentrations between the genotypes (data not shown). 

 

Anthropometry in elderly men and women 
Study group 2 consisted of 364 male and 392 female homozygous C-allele carriers (CC), 435 

male and 502 female heterozygous G-carriers (CG) and 134 male and 136 female homozygous 

G-allele carriers (GG). Genotype distributions did not differ from those expected under HWE 

conditions. As shown in Table 2, there were no significant age differences between the three 

genotype groups.Figure 3A shows that the G-allele is associated with a lower BMI (Ptrend= 

0.006). Homozygous G-allele carriers have a lower mean BMI compared to CG-carriers (P = 

0.031) and to  CC-carriers (P = 0.006). The WHR was also significantly lower in GG-carriers 

when compared to CG-carriers (P= 0.022) and CC-carriers (P = 0.049). Additional correction 

for smoking as a potential confounder did not change these results. No significant differences 

were found in height and systolic or diastolic blood pressure (Table 2).  
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Figure 2:  Cortisol concentrations after administration of 1 mg DEX (A) and 2.5 years later 

after 0.25 mg DEX (B) in CC-carriers (white bars), CG-carriers (striped bars), GG-carriers (black 

bars). In both tests post-DEX cortisol levels were significantly lower in G-allele carriers 
 
BclI polymorphism in relation to Body composition 
In study group 3 we found 165 homozygous C-allele carriers, 165 heterozygous G-allele 

carriers, and 40 homozygous G-allele carriers, which was compatible with the HWE. No 

significant age differences were present (table 3). Figure 3B shows again that the G-allele was 

associated with a lower BMI (Ptrend= 0.05). No differences were found in height, total fat mass, 

trunk fat or WHR (Table 3). However, lean body mass, which we also corrected for height, 

tended to be lower in heterozygous and homozygous G-allele carriers (Ptrend= 0.07). BMI and 

lean mass remained lower in G-allele carriers after an additional correction for smoking.  

 

Table 2: Age, anthropometric parameters and blood pressures in the three genotypes in study 

group 2  

Genotype (N) CC (756) CG (937) GG (270)  

 
 Mean SE Mean SE Mean SE P 

Age   (yrs) 67.2 0.3 67.3 0.2 67.0 0.4 0.78 
Height (m) 168.2 0.3 167.8 0.3 168.7 0.6 0.66 
WHR  0.91 0.00 0.91 0.00 0.89 0.01 0.08 

SBP (mmHg) 137.6 0.8 137.5 0.7 137.7 1.3 0.78 

DBP (mmHg) 73.8 0.4 73.5 0.4 74.4 0.7 0.25 

All parameters were adjusted for age and sex, and tested using linear regression analysis. 

Blood pressures were also adjusted for BMI. SE, Standard Error of the mean, WHR, waist to hip 

ratio, SBP, systolic bloodpressure, DBP, diastolic bloodpressure. 
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BclI polymorphism in relation to Bone Mineral Density 
In study group 2 bone mineral density was also measured. In females (n= 1030), BMD in the 

lumbar spine (CC: 1.03 ± 0.01, CG: 1.01± 0.01, GG: 0.98 ± 0.01, Ptrend =0.019), as well as in 

the trochanter (CC: 0.72 ± 0.01, CG: 0.71± 0.01, GG: 0.69 ± 0.01, Ptrend =0.062) and the 

femoral neck (CC: 0.81 ± 0.01, CG: 0.80 ± 0.01, GG: 0.78 ± 0.01, Ptrend =0.184) was lower in 

an allele-dosage way in G-allele carriers. After an additional correction for BMI, only in the 

lumbar spine a tendency towards lower BMD in G-allele carriers remained (L2-L4: p=0.066, 

trochanter: p=0.364 and femoral neck: p=0.523).  

 

 

Table 3:  Age, anthropometric parameters and body composition by BclI genotype in study 

group 3  

Genotype (N) CC (165) CG (165) GG (40)  

 Mean  SE Mean  SE Mean  SE P 

Age   (yrs) 77.8 0.3 77.9 0.3 77.6 0.6 0.81 
Height (m) 1.73 0.5 1.72 0.5 1.73 0.9 0.79 
WHR  0.98 0.00 0.98 0.00 0.99 0.01 0.38 

Fat mass (kg) 21.5 0.5 20.4 0.4 21.0 0.8 0.24 
Trunk fat (kg) 10.8 0.2 10.3 0.2 10.8 0.4 0.25 

Test for differences between the three genotypes. All parameters were adjusted for age. SE, 

Standard Error of the mean, BMI, body mass index, WHR, waist to hip ratio. 

 

In males, a significant interaction between age and BMD existed (p<0.05), therefore we 

analyzed them in 2 age groups based on the median age. In the older age group (age 67-80 

yrs) no differences between the 3 genotypes were found. However, in the younger age group 

(age 55-67 yrs), homozygous G-allele carriers had lower BMD in the femoral neck (CC: 0.89 ± 

0.12, CG: 0.88 ± 0.13, GG: 0.86 ± 0.12, Ptrend =0.044) and in the trochanter (CC: 0.86 ± 0.13, 

CG: 0.86 ± 0.13, GG: 0.82 ± 0.12, Ptrend =0.026). After an additional correction for BMI, the 

differences in BMD in femoral neck and trochanter were no longer statistically significant 

(p=0.133 and p=0.117, respectively). No differences were found in BMD in lumbar spine. 

 

Discussion 

 

We identified the BclI restriction site polymorphism of the glucocorticoid receptor gene as a C/G 

single nucleotide polymorphism in intron 2, 646 nucleotides downstream of exon 2. This finding 

offered the possibility to use methods, which are less labour-intensive than Southern blotting to 

genotype and, thus, facilitate screening of large groups. The lengths of the restriction fragment 
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sequences were 2.2 and 3.9 kb for the shorter and the larger allele, slightly different from the 

previously described 2.3 and 4.5 kb restriction fragments 7, possibly due to the relatively 

accurate sizes as determined by agarose gel electrophoresis. According to the common 

nomenclature the polymorphism could be named IVS2+646, however in view of the existing 

literature on this polymorphism we chose to retain the currently used name ‘BclI 

polymorphism‘. 

Carriers of the G-allele had lower cortisol levels after both 1 mg and 0.25 mg DEX, suggesting 

that they are more sensitive to the feedback action of GCs on the HPA-axis. In accordance, 

Panarelli et al 10 found in a group of 64 men 6 homozygous carriers of the 4.5 kb allele (G-

allele) who had increased skin vasocontriction in reaction to budesonide compared to 7 

homozygous carriers of the 2.3 kb allele (C-allele), which also suggests hypersensitivity to GCs. 

In addition, in a study of 284 Swedish men, stimulated cortisol secretion after a standardized 

lunch differed between the BclI genotypes, which suggests an association between the BclI 

polymorphism and regulation of the HPA-axis as well 6. However, we cannot explain the 

negative results after a 0.5 mg DST described in the same report. In another study, the BclI 

polymorphism was found to be associated with hyperinsulinaemia and relative insulin resistance 

in obese women 11. In contrast, we did not find an association with insulin levels.  This might 

be due to the fact that we studied a normal weight population and not an obese population. 

 In our population-based study in elderly subjects (study group 2), we found an 

association between the G-allele and lower BMI and WHR. We confirmed this association of the 

G-allele with lower BMI in a group of elderly males (study group 3). Our findings are in contrast 

with several previous reports. Rosmond et al. reported that the G-allele was associated with 

increased abdominal sagittal diameter, BMI, WHR and leptin levels 6. In two other studies, also 

an association between the G-allele and increased abdominal fat mass was found, but no 

relation with BMI or total fat mass 9, 16. We can only speculate what causes the lower BMI we 

observed in heterozygous G-allele carriers, and homozygous G-allele carriers in particular. As 

the total body fat mass was equal in the three genotypes, this lower BMI could be explained by 

a lower lean body mass, as was indeed observed in elderly males (study group 3), although 

this was only a trend. One of the main differences between earlier studies and ours is the age 

of the subjects: we studied older populations. We speculate therefore that the differences in 

this population are caused by a life long exposure to the increased GC sensitivity associated 

with the G-variant. It is possible that the influence of GCs on the normal changes in body 

composition that accompany ageing, results in G-allele carriers in an additional loss of lean 

mass. In this context, it is known that most obese individuals have an increased lean body 

mass, as well as fat mass. However, in patients suffering from Cushing’s syndrome, the obesity 

is not accompanied by an increase, but by a decrease in lean body mass 17
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In parallel to this, G-allele carriers could have lower lean mass due to a subtle, but life long 

exposure to the catabolic effect of hypersensitivity to GCs, instead of exposure to high cortisol 

levels.  

GCs are also known to decrease bone mineral density 18. In addition, a lower body weight is 

accompanied by lower BMD 19. Thus, we would have expected to find lower BMD in the G-allele 

carriers. In our population-based study in the elderly we found a subtle negative effect, in a 

dosage-allele way, of the BclI polymorphism on BMD in females, but only in the youngest half 

(55-67 yrs) of the males in this population. Most of these effects can probably be explained by 

the differences in BMI, which we found to be lower in the G-allele carriers. Moreover, statistical 

significance for differences in BMD disappeared after an additional correction for BMI. We 

previously described in the same population (study group 1) a polymorphism in codon 363 of 

the GR gene, which was also associated with increased GC sensitivity with respect to the 

negative feedback mechanism 3. For this N363S polymorphism we only found differences in 

cortisol levels between genotypes after 0.25 mg DEX, but not after 1 mg DEX, while for the BclI 

genotypes differences were present in an allele-dosage way after both 1 mg and 0.25 mg DEX. 

In this population the allele frequency of the G-variant of the BclI polymorphism is much higher 

(35 %) than the S-allele of the N363S polymorphism (3%), thus the statistical power to detect 

differences between N363S genotypes was less. 

In contrast,  the N363S polymorphism was associated with higher BMI in the elderly 3. We 

speculate that the N363S polymorphism predominantly affects fat mass, whereas the BclI 

polymorphism has an effect on lean body mass, possibly due to a tissue specific regulation of 

the expression of the GR gene. In this context, Panarelli et al 10 demonstrated increased 

sensitivity to GCs in fibroblasts in vivo, while in vitro experiments on leucocytes showed a 

tendency towards decreased sensitivity to DEX, so these contrasting  findings suggest that 

tissue-specificity might play a role in the associations observed for the BclI polymorphism. 

At present, we do not know the exact mechanism through which the BclI polymorphism exerts 

its effects. There is no obvious function in processing of GR pre-mRNA. Possibly this 

polymorphism is linked to variations in the promoter region (increased expression) or 3‘-UTR 

(increased stability) of the GR gene. We found no linkage with the previously described 2 

polymorphisms in codons 363 or 22/23 (data not shown). A less likely possibility is linkage to 

one or more genes in the vicinity of the GR gene. However, the choice is rather limited since, in 

view of our results, this other gene would have to play a direct role in the sensitivity of the 

HPA-axis. Other mechanisms leading to altered GC sensitivity also exist. It is known, that locally 

GR sensitivity can be influenced by cytokines, as reported in asthma 20. Also, alternative splicing 

could play a role, however, to our knowledge the polymorphic BclI site is not located in the 

vicinity of a sequence involved in the splicing process. 

In conclusion, we identified an BclI-RFLP of the GR gene as a C to G polymorphism in 

intron 2, which increases the sensitivity of negative feedback mechanism of GCs. Furthermore, 
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we found an association between the presence of the G-allele and lower BMI in two different 

healthy older populations, as well as a tendency towards a lower lean body mass in older 

males. The exact mechanism of the effects of this RFLP is not clear, and needs further 

investigation. 
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Abstract 
 
Objective: We have recently reported that, in healthy elderly Dutch individuals, a N363S 

polymorphism in the glucocorticoid receptor (GR) gene is associated with  higher sensitivity to 

low dose dexamethasone (0.25 mg), evaluated as both cortisol suppression and insulin 

response, and  with an increased body mass index (BMI). In the present study we investigated 

the role of the N363S polymorphism, and a BclI restriction site polymorphism in a group of  

Italian patients with severe obesity. Design: Two hundred and seventy-nine patients (mean BMI 

45.9 ± 0.9 Kg/m2) were genotyped using both PCR-restriction fragment length polymorphism 

analysis and Taqman Sequence Detection System. Determination of several metabolic and 

antropometric parameters was also performed in order to correlate them to the genotype.  

Results: In this group of obese patients, 13 subjects (8 females and 5 males) were 

heterozygous for the N363S variant (allelic frequency 2.3%) and had significantly higher BMI (p 

< 0.04), resting energy expenditure  (p < 0.03) and food intake (p < 0.01) when compared to 

wild-type homozygotes. When the data were analysed according to sex, female heterozygotes 

for the N363S allele had significantly higher BMI (p = 0.04), resting energy expenditure  (p = 

0.03) and food intake (p = 0.008) than obese women with the wild type 363 GR gene. Male 

carriers of this variant also had higher values for these variables although the differences did 

not reach statistical significance.  A case control study with homozygous wild type obese 

subjects which were age-, sex- and BMI-matched, revealed no difference in resting energy 

expenditure and food intake. The allele frequency of the BclI variant was 27% (89 females and 

41 males out of 269 subjects). No differences in anthropometric and metabolic parameters were 

found between subjects heterozygous or homozygous for this variant GR in this obese 

population. However, when we studied the effect of the presence of the BclI polymorphism and 

the N363S variant in the same individual, we found that the subjects who carried both 

polymorphisms had a tendency towards higher systolic and diastolic blood pressure and 

significantly higher total and LDL-cholesterol levels (p=0.005 and p=0.05, respectively). 

Discussion: Taken together the results of this study and those obtained in the Dutch population, 

we speculate that heterozygous carriers of the N363S variant who develop obesity, may 

become even more obese, possibly because they have a hypersensitive insulin response and 

thus, via activation of lipogenesis, store fat more efficiently. Furthermore, these data suggest 

that N363S carriers who carry the BclI polymorphism as well, tend to have a slightly 

unfavourable cardiovascular profile.  
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Introduction 

 

There is a considerable variability in the sensitivity to glucocorticoids across individuals 1. Some 

of these differences have been correlated to polymorphisms in the glucocorticoid receptor (GR) 

gene 2. One of the five polymorphisms identified, is an A to G substitution in codon 363 in exon 

2 of the GR-gene causing a change of asparagine to serine in the GR protein.  

This N363S polymorphism was, in the first reported study, associated with higher sensitivity to 

low-dose (0.25 mg) dexamethasone, with respect to both cortisol suppression and insulin 

response (1). In a group of 216 elderly individuals from the Rotterdam Study,  12 heterozygous 

N363S carriers tended to have a higher BMI (28.1 ±1.09 vs 26.6 ± 0.26 Kg/m2; p<0.07);  this 

was confirmed two and half years later in a second study in which 161 of these same 

individuals participated : 8 N363S heterozygous carriers vs 153 controls demonstrated a 

significantly higher BMI ( 28.3 ± 1.52 vs 25.5 ± 0.3 Kg/m2; p<0.05).  

In the subsequent years a number of investigators have reported on the association between 

the N363S polymorphism and obesity with contradictory results. Lin and coworkers3 reported a 

highly significant association with BMI in a cohort of Australian subjects of British descendent. 

The overall penetrance in participants with the N363S variant was 83% in overweight 

normotensive individuals and 100% in overweight hypertensive subjects. However, a Swedish 

study4 did not confirm this association with BMI, while in an English study5 only a significant 

increase of waist-hip ratio (WHR) was observed in male heterozygotes for the N363S variant.  

It is noteworthy  that most subjects  heterozygous for the N363S variant should be considered 

overweight rather than obese as, in the populations studied,  the mean BMI  reported never 

exceeded 28 Kg/m2. To further investigate the linkage between the N363S polymorphism and 

obesity,  we studied a series of Italian patients with severe obesity (mean BMI of 45.9±0.9 

Kg/m2) and evaluated whether the N363S allele is associated with any subphenotypic 

characteristics of obesity.  

Recently, it has been shown that a very common BclI restriction site polymorphism of 

the GR gene is associated with abdominal obesity and higher systolic blood pressure6,7. In the 

present study we also determined the effect of this BclI polymorphism on anthropometric and 

metabolic parameters and the potential effects of the interaction between these two gene 

variants. 

 

Materials and Methods 

 

Patients 

The present study included 279 consecutive obese patients (185 women, 94 men). Their mean 

age was  45.6+ 0.9 years  with  a mean BMI of 45.9 + 0.9 kg/m2 (range 36-85). They were 

referred,  between September 1998 and November 2000, to the Division of Endocrinology and 
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Metabolic Diseases of the S. Giuseppe Hospital, Istituto Auxologico Italiano (Verbania) for 

medical problems related to obesity.  

Twenty-seven (16 women and 11 men) out of the 279 patients  had diabetes mellitus 

well-controlled by diet  (HbA1C= 6.8 + 0.2%). All patients had normal thyroid function and 

none of them had concomitant severe renal, hepatic or cardiac disease. Body weight was stable 

for the last 4 weeks before admission.  

The patients underwent a study protocol including evaluation of  BMI, measurement 

of WHR, Resting Energy Expenditure (REE), energy intake, and determination of serum total 

cholesterol, high density lipoprotein (HDL)-cholesterol, triglycerides, fasting insulin and fasting 

glucose levels, as well as serum leptin concentrations.  

WHR was calculated on the basis of the measurements taken at patients’ admission. 

Blood sampling to determine leptin levels and other biochemical parameters, assessment of REE 

and  body composition were performed  after a 12 h-fast and before beginning treatment. 

Patients also underwent a 7-day dietary recall to estimate their usual daily energy intake. The 

study protocol was approved by the Institution Ethics Committee; the aim and the design of the 

study were  explained to the patients who gave their informed consent. Genotype frequency of 

the patients was compared with that of 106 lean (BMI 22.4 + 0.5 kg/m2) subjects (76 females 

and 30 males). These subjects were clinical and laboratory workers and medical students. 

 

Measurements 

REE was assessed by a computerized, open-circuit, indirect calorimetry system that measured 

resting oxygen uptake and resting carbon dioxide production using a ventilated canopy 

(Sensormedics, Milano, Italy). REE was measured at 08.00 h after an overnight fast, in a 

comfortable and thermo-regulated (22-24 C°) room where only the investigator and the patient 

were present. After a 10 minute period of steady-state, values were recorded each minute for 

30 minutes; the mean value was then  expressed as Kcal/24h.  

Body fat distribution was estimated by WHR. The waist circumference was taken to 

the smallest standing horizontal circumference between ribs and the iliac crest, the hips 

circumference was taken as the largest standing horizontal circumference of the buttocks.  

Glucose, total cholesterol, HDL cholesterol, triglycerides and insulin were measured by 

enzymatic methods (Boerhinger-Mannheim Kits, Germany,). Low density lipoprotein (LDL)-

cholesterol was calculated using the following formula: LDL-cholesterol = total cholesterol - 

((triglycerides/5) + HDL-cholesterol). HbA1C (Boerhinger-Mannheim Kits, Germany) were 

determined by immunoenzymatic methods (Tosoh, Kyobashi Chuo-Ku, Tokio, Japan). FT4 and 

TSH were measured by radioimmunoassay (DPC Euro/DPC Ltd Llanberis,UK). Serum leptin 

levels were measured by radioimmunoassay using reagents supplied by Linco Research Inc  (St 

Louis, MO, USA). In this assay, detection limit is 0.009 nmol/L; the intra-assay variation is 2.2% 

at 0.375 nmol/L, 2.7% at 1.56 nmol/L, and 5.9% at 3.92 nmol/L; inter-assay variation from 10 
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different runs of 3 serum samples is 4.3%, 4%, 6.9% at the concentration of  0.318, 1.31 and 

3.5 nmol/mL respectively. In 32 lean subjects (BMI 18-25 Kg/m2) reference limits (2.5-97.5 

percentiles) were 0.061-0.323 nmol/L in men and 0.162-1.08 nmol/L in women. 

Insulin sensitivity was evaluated by the Quantitative Insulin Sensitivity Check Index 

(QUICKI). This index derives from a mathematical model that takes into account the logarithm  

of fasting insulin and glucose levels to evaluate insulin sensitivity and has a very good  linear 

correlation with the gold standard clamp measurement 8.    

 

Genetic analysis 

N363S polymorphism DNA was extracted from peripheral blood leukocytes using standard 

techniques. PCR amplification of the relevant fragment of the GR gene was carried out 

employing primer sequences and amplification conditions as described previously2. Restriction 

fragment length polymorphism analysis was carried out to determine genotypes.  The PCR-

products were digested with Tsp509I (New England Biolabs, Inc) at 65° C for  1 hour. Tsp509I 

cleaves at two restriction sites in the wild type (at 95 and 114 bp ) and at one restriction site 

(at 95 bp) in the polymorphic variant. Fragment analysis was carried out with ethidium bromide 

on a 3% agarose-gel (MP-Boehringer, Mannheim).  

BclI polymorphism DNA was genotyped by allelic discrimination using TaqMan Universal PCR 

master mix (Applied Biosystems, Branchburg, New Jersey, USA), primers and VIC- and FAM-

labeled MGB-probes as previously described (van Rossum et al, 2003) and a Taqman ABI Prism 

7700 Sequence Detection System (Applied Biosystems, Foster City, CA, USA). Reaction 

components and amplification parameters were based on the manufacturer’s instructions using 

an annealing temperature of 60° C and optimized concentrations for primers and probes of 400 

nmol/L and 50 nmol/L, respectively. We re-analysed genotypes in 18 samples by PCR-restriction 

fragment length polymorphism analysis using the BclI restriction enzyme for digestion at 37 °C 

of 1 hour and found identical genotypes. 

 

Statistical Analysis 

Data were analyzed using SPSS for Windows, release 10.1 (SPSS, Chicago, IL). If appropriate 

logarithmic transformations were applied to normalize variables and to minimize the influence of 

outliers. The relationships between the GR polymorphisms and BMI as well as the other 

parameters were studied by one way analysis of variance (ANOVA) for each sex seperately. To 

investigate the effect of the BclI polymorphism on the N363S polymorphism we compared two 

groups of N363S-carriers: one group without the BclI polymorphism and a second group with 

carriers of both the N363S and at least one copy of the BclI variant. Because of the low 

numbers we analyzed these data for men and women together and adjusted for age and sex 

testing by ANCOVA using the general linear model procedure. Data are expressed as mean + 

S.E.M. P values < 0.05 were considered to indicate a significant difference. 
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Results 

 

N363S polymorphism 

Genotype analysis of the 279 obese patients studied identified 13 heterozygotes for the N363S 

allele. In contrast, among the 106 lean subjects examined, only two heterozygotes were found. 

Thus, the N363S allelic frequency was 2.3% and 0.9 % in the obese and lean subjects, 

respectively. As previously observed in three other European populations, no N363S 

homozygotes were found 1,4,5. In view of the frequency of the variant allele, this is not 

unexpected.  
 

Table 1: Values (mean ± S.E.M.) of the demographic, anthropometric and metabolic 

parameters of the obese patients according to gender 

Variable Men (94) Women (185) 

   

Age (yr) 42.04 ± 1.5 47.5 ± 1.5 

BMI (Kg/m2) 46.1 ± 0.7 45.7 ± 0.5 

WHR (cm) 0.98 ± 0.007 0.8 7± 0.006* 

BP (sys) 136.3 ± 1.5 135.9 ± 1.2 

BP (dia) 83.4 ± 0.9 82.6 ± 0.8 

Energy intake (Kcal/day) 3728.2 ± 160 3181.5 ± 123.6 † 

REE (Kcal/day) 2290.7 ± 36 1799.4 ± 27.1* 

Leptin (nmol/L) 1.97 ± 0.099 3.12 ± 0.081* 

Total cholesterol (mmol/L) 5.45 ± 0.12 5.41± 0.08 

LDL-cholesterol (mmol/L) 3.40 ± 0.10 3.36 ± 0.08* 

HDL-cholesterol (mmol/L) 1.07 ± 0.02 1.33 ± 0.02* 

TGL (mmol/L) 2.19 ± 0.19 1.6 ± 0.07 † 

FT4 (nmol/L) 163.4 ± 1.67 159.5 ± 2.5 

TSH (mU/L) 2.2 ± 0.13 2.6+ ± 0.2 

IRI (pmol/L) 131.3 ± 7.74 111.2 ± 5.74 

QUICKI 0.321 ± 0.005 0.325 ± 0.003 
 

* P < 0.001;  women vs men † P < 0.01;  women vs men. BMI, body mass index, WHR, 

waist-to-hip ratio, BP, blood pressure, REE, resting energy expenditure, HDL, high density 

lipoprotein, TGL, triglycerides, FT4, free thyroxine, TSH, thyroid stimulating hormone, IRI, 

immunoreactive insulin, QUICKI , Quantitative Insulin Sensitivity Check Index  
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The heterozygous subjects had significantly higher BMI (p< 0.04), REE (p<0.03) and food 

intake (p<0.01) when compared to homozygous wild-types. Table 1 presents a comparison of 

the demographic, anthropometric and metabolic parameters of the obese patients according to 

gender. Most parameters were strongly associated to sex. Thus, in view of the hormonal and 

physiological differences between males and females, the association of the GR genotype and 

the clinical and metabolic parameters considered were analyzed  separately for the two sexes. 

Five of the 94 men and 8 of the 185 women were N363S heterozygotes with similar allelic 

frequencies (2.6% and 2.1%, respectively). As indicated in Table 2, women heterozygous for 

the N363S allele had significantly higher BMI (p = 0.04),  REE (p = 0.03) and food intake (p = 

0.008). Male carriers of this variant also had higher values for these variables although the 

differences did not reach statistical significance. As previously observed1, fasting insulin levels in 

both male and female N363S carriers were not different from those of wild type subjects. Also 

the presence of the N363S polymorphism did not influence insulin sensitivity as the results of 

the QUICKI index were similar in the two groups. Moreover, thyroid function, as assessed by 

TSH and FT4 measurements, was also similar in the wild type and heterozygous subjects. 

Furthermore, the anthropometric data of the 13 N363S carriers were also compared with a 

similar group of wild-type obese subjects, carefully matched for age, sex and BMI. When this 

analysis was performed, food intake and REE values among the two groups were not 

significantly different (data not shown).  

 

BclI  polymorphism 

The BclI allelic frequency observed in our obese patients was 73% and 27%  for the C and G 

allele respectively. We did not find any differences between the homozygous C-allele carriers, 

heterozygous G-allele carriers and homozygous G-allele carriers in BMI, WHR, blood pressures, 

food intake, REE, leptin, lipids, thyroid hormones or insulin sensitivity parameters. 

 

Interaction of the BclI  polymorphism and  N363S polymorphism 

Seven out of the 13 heterozygotes for the N363S variant, also carried the BclI polymorphism 

(all heterozygotes). To investigate whether there is an effect of the presence of the BclI 

polymorphism on the N363S polymorphism we compared carriers of the N363S polymorphism 

and carriers of both N363S and BclI polymorphisms (only heterozygous G-allele carriers, 

because we did not find any homozygous G-allele carriers who had also the N363S variant). For 

this purpose, we analyzed the two sexes together and corrected for age and sex. As shown in 

table 3, carriers of both polymorphisms had a tendency towards higher systolic (p=0.08) and 

diastolic (p=0.06) blood pressure. BMI and WHR were not significantly different between the 

two groups. Total and LDL- cholesterol levels however, were higher (p=0.005 and p=0.05, 

respectively) in the group who carried both the N363S and the BclI polymorphism. No 
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differences were found in other parameters, such as insulin sensitivity parameters, food intake, 

leptin, HDL-cholesterol, triglycerides and thyroid hormones.  

 

Table 2: Demographic, anthropometric and metabolic parameters of the obese patients 

according to the genotype  
 

Sex (N) 
 

Men (94) 
 

 
Women (185) 

 

Genotype (N) wild type (89) N363S (5) Wild type (179) N363S (8) 

Age (yr) 42.6 ± 1.6 41 ± 3.3 47.6 ± 1.2 45 ± 4.2 

BMI (Kg/m2) 46.1 ± 0.7 47.8 ± 1.5 45.5 ± 0.5 51.4 ± 3.6 † 

WHR  0.98 ± 0.01 0.99 ± 0.02 0.86 ± 0.01 0.87 ± 0.03 

BP (sys) 136 ± 1.6 141± 5.1 136 ± 1.3 133 ± 5 

BP (dia) 83 ± 1.0 90 ± 1.5 82.5 ± 0.8 83.7 ± 2.6 

Intake (Kcal/day) 3720 ± 160 4298 ± 1103 3103 ± 112 4496 ± 1107 * 

REE (Kcal/day) 2286 ± 37.8 2475 ± 113 1787 ± 27.5 2045 ± 131† 

Leptin (nmol/L) 2.01 ± 0.73 1.32 ± 0.16 3.08 ± 0.08 3.66 ± 0.49 

Total chol (mmol/L) 5.53 ± 0.12 4.63 ± 0.26 5.41 ± 0.08 5.43 ± 0.58 

LDL (mmol/L) 3.46 ± 0.10 2.42 ± 0.39 3.35 ± 0.08 3.49 ± 0.47 

HDL (mmol/L) 1.08 ± 0.02 0.87 ± 0.07 1.33 ± 0.03 1.36 ± 0.09 

TGL ( mmol/L) 2.18 ± 0.2 2.93 ± 0.77 1.62 ± 0.07 1.31 ± 0.18 

FT4 (nmol/L) 163.4 ± 3.9 157 ± 1.2 159.5 ± 2.6 155 ± 3.6 

TSH (mU/L) 2.2 ± 0.1 2.5 ± 0.8 2.6 ± 0.2 2.3 ± 0.5 

IRI (pmol/L) 132 ± 7.89 114 ± 12.9 110 ± 5.7 121 ± 22.2 

QUICKI 0.32± 0.01 0.31 ± 0.00 0.33 ± 0.00 0.32 ± 0.01 
 

* P < 0.01 † P < 0.05, BMI, body mass index, WHR, waist-to-hip ratio, BP, blood pressure, REE, 

resting energy expenditure, chol, cholesterol, HDL, high density lipoprotein, TGL, triglycerides, 

FT4, free thyroxine, TSH, thyroid stimulating hormone, IRI, immunoreactive insulin, QUICKI , 

Quantitative Insulin Sensitivity Check Index  
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Table 3: BMI, blood pressures and cholesterol of the female and male N363S carriers 

and carriers of both  N363S and BclI polymorphism 
 

Genotype (N) N363S carriers (5) 
N363S + BclI 
carriers (7) 

   

BMI (Kg/m2) 48.1 ± 1.7 51.8 ± 4.0 

BP (sys) 131 ± 7.8 139 ± 3.5 

BP (dia) 84 ± 4.0 87 ± 1.8 

Total cholesterol (mmol/L) 4.25 ± 0.77 5.88 ± 0.24 * 

LDL-cholesterol (mmol/L) 2.20 ± 0.59 3.80 ± 0.26 † 

  

* P = 0.005; N363S carriers vs N363S + BclI carriers.†  P = 0.05; N363S carriers vs N363S + 

BclI carriers. BMI, body mass index, BP, blood pressure, LDL, low density lipoprotein 

 

 

Discussion 

 

We have previously demonstrated that in a normal elderly population a polymorphism in exon 2 

of the GR gene, leading to an asparagine to serine change at codon 363, is associated with an 

increased sensitivity to glucocorticoids and a marginal increase of BMI1. In the present study, 

we evaluated a cohort of Italian severely obese patients in order to verify whether this genetic 

variant is correlated to any of the anthropometric, metabolic and clinical features of obesity. 

Out of 279 obese subjects studied, 13 were found to be heterozygous for the N363S allele. Due 

to the known hormonal and metabolic differences between men and women, we analyzed the 

two groups separately and found that female carriers of the N363S variant (n=8) had a 

significant increased BMI, food intake and REE. These same variables were also increased in 

heterozygous men (n=5), but the differences did not reach statistical significance. 

  The patients were also studied for the presence of a BclI RFLP  of the GR gene that 

has been recently shown to be associated with abdominal obesity 6,7 The allelic frequency of  

this BclI polymorphism in our obese patients was 27%. We did not find differences between 

noncarriers and carriers of this BclI polymorphism in our obese patients. These data are in 

contrast with the results of the studies mentioned above. One of the explanations for this 

discrepancy could be related to the characteristics of the different populations studied. Indeed, 

the subjects included in this study were selected for the presence of severe obesity and thus it 

can be expected that differences in anthropometric parameters will only be found when there is 

a strong effect of the polymorphism. 
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Because 7 out of 13 N363S carriers were also heterozygous for the G-allele of the BclI 

polymorphism we were interested in the interaction of these variations in the GR gene. Carriers 

of both polymorphisms tended to have higher systolic and diastolic blood pressure and higher 

total and LDL-cholesterol. 

 We do not know the mechanism underlying the observed differences between N363S 

carriers and N363S + BclI carriers. It is also unknown how the BclI polymorphism exerts its 

effect. It is possible that it directly affects GR gene expression or considering its intronic 

location- is linked to a locus in one of the exons or the promoter region.  

It is well known that in obese subjects energy expenditure and food intake are directly 

correlated with BMI 9,10. In order to gain more insight into the physiological significance of our 

findings, we performed a case-control evaluation in which the 8 N363S heterozygous female 

carriers were compared with a similar number of age-, sex-, and BMI matched obese women 

with the wild type GR gene. The results of this analysis indicated that the differences in food 

intake and energy expenditure were not significant anymore. These observations suggest that 

the effect of the  N363S variant on obesity results primarily in an increased BMI. In our original 

study1, we documented that heterozygotes for the N363S polymorphism have greater insulin 

response to dexamethasone administration than non-carriers. Thus, we speculate that one of 

the patho-physiological mechanisms underlying the observed phenomenon could be a relative 

hypersensitivity for insulin elicited by changes in serum cortisol levels that, theoretically, could 

result in increased lipogenesis and eventually in an increased BMI. While it is clear that 

environmental factors play a considerable role in the development of obesity, a genetic 

influence on adipose tissue accumulation and distribution has also been demonstrated, with 

estimation of an additive genetic contribution to the expression of some obesity-related traits of 

50% or greater 11,12. The search for genes underlying normal variation in human obesity has so 

far being challenging. Some efforts have been focused on the identification of rare  single gene 

defects that typically lead to extreme obesity 13,14. In addition, quantitative trait locus mapping 

methods for complex phenotypes have been used with some success 15. In the present study 

we analyzed the potential influence of a polymorphic single gene abnormality in codon 363 of 

the GR gene, which seems to have a small effect in the normal population, but exerts an 

adiposity-enhancing effect in obese individuals.  

Since our first report, several population studies have been performed to look for 

associations between the presence of the N363S variant and long-term effects on BMI, glucose 

metabolism and hypertension. In a group of 109 women with the polycystic ovary syndrome, 

the N363S variant was not related to patients with and without androgen excess 16. Rosmond 4 

did not find any association between the N363S variant and obesity, cortisol secretion  

(including the response to 0.5 mg dexamethasone), blood pressure and insulin sensitivity, while 

Dobson et al. only observed an increased WHR in male N363S carriers 5. In contrast, Lin et al 

found a 9.4% heterozygotes and a 2% homozygotes in a white Australian population of British 
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descent3. Apart from a highly significant association with BMI (heterozygotes) and obesity 

(homozygotes), they extended their studies reporting that this genetic variant also plays a role 

in type 2 diabetes mellitus and coronary artery disease 17. 

The contradictory results in the studies mentioned above, with regard to an 

association between N363S heterozygosity and BMI reflects the problems which are inherent to 

the study of low frequency genetic variants: differences in the study population, in the 

measuring of the various forms of obesity, insulin sensitivity and dexamethasone sensitivity 

underline the difficulties of studying polymorphic single gene variations which exert a small 

effect 12. This is further underlined by the observation that the N363S variant in the GR gene 

was not detected in any of 192 Japanese individuals 18. As we have shown in the present study 

the presence of two polymorphisms which previously both have been associated with increased 

BMI or abdominal obesity can have a combined effect. Thus, not only differences in frequency 

of the N363S variant are important for explaining the contrasting findings in different ethnic 

populations, but also the frequency of the BclI polymorphism and in particular the combination 

of the two polymorphisms in the same individuals can play a role.  

In conclusion, we demonstrated that patients with severe obesity, who are 

heterozygous for the N363S variant of the GR gene have a significantly higher BMI than obese 

patients with the wild type GR gene. Furthermore, N363S carriers who carried the BclI 

polymorphism as well, tended to have higher blood pressures and serum cholesterol levels.  
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Abstract 

 

Objective: sensitivity to glucocorticoids within the normal population is highly variable and 

partly determined by polymorphisms in the glucocorticoid receptor (GR) gene (NR3C1). We 

investigated the exact sequence alteration of a TthIIII polymorphism in the GR gene, whether 

it is associated with glucocorticoid sensitivity, and its relationship to 3 polymorphisms of the GR 

gene (N363S, BclI, ER22/23EK). Design: two dexamethasone (DEX) suppression tests were 

performed with 1 and 0.25 mg DEX, respectively. Patients: we genotyped a random subgroup 

of 209 participants of the Rotterdam Study, a population-based study in the elderly. 

Measurements: anthropometric parameters, cortisol, insulin and glucose levels, and lipid 

concentrations were measured. Results: We identified the TthIIII polymorphism as a C to T 

mutation, 3807 bp upstream from the mRNA start site. We found 39.7 % CC-carriers, 44.5 % 

CT-carriers, and 15.8 % TT-carriers. No differences were found between TthIIII genotypes in 

sensitivity to DEX, baseline cortisol, insulin, glucose or cholesterol levels, or in anthropometric 

variables. However, all ER22/23EK-carriers also carried the TthIIII T-allele, and carriers of both 

these polymorphisms had a significantly smaller cortisol suppression after 1 mg DEX, lower 

fasting insulin levels, and lower total and LDL-cholesterol levels than TthIIII T carriers without 

the ER22/23EK variant and noncarriers. No interaction was found between the TthIIII variant 

and N363S or BclI polymorphisms. Conclusions: the TthIIII polymorphism is not functional by 

itself. However, the ER22/23EK polymorphism is without exception linked to the TthIIII T 

polymorphism and this haplotype is associated with a relative resistance to glucocorticoids, and 

a healthy metabolic profile.  
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Introduction 

 

Glucocorticoids (GCs) are important in the regulation of numerous processes throughout the 

human body. Their effects are established by binding to the glucocorticoid receptor (GR) 1. 

Variation in sensitivity to GCs within the normal population can be influenced by polymorphisms 

in the GR gene (NR3C1). Several of these polymorphisms have been reported. A polymorphism 

in codon 363 causes an amino acid change from asparagine (N) to serine (S), and has been 

shown to be associated with hypersensitivity to GCs, as well as an increased insulin response to 

GCs 2. In some studies this polymorphism was associated with a higher body mass index (BMI) 
2-6 or higher waist-to-hip ratio 7, while others showed no association with BMI 8-10. Lin et al 

recently reported an association between the N363S polymorphism and coronary artery disease 

and several cardiovascular risk factors independent of weight 11.  

  A frequent BclI restriction site polymorphism was reported to be associated with 

abdominal obesity 12-14, increased insulin levels in obese women 15, and tissue specific 

differences in GC sensitivity 16. Recently, we identified the exact mutation of this polymorphic 

site (C to G in intron 2), and showed an association between the G-allele of the BclI 

polymorphism and hypersensitivity to GCs in an elderly Dutch population 17. In a larger group 

of Dutch elderly we found a lower BMI in heterozygous and homozygous G-allele carriers. This 

was confirmed in another group of Dutch elderly men 17. In these males we also found a 

tendency towards lower lean body mass in G-allele carriers, which is in line with an increased 

sensitivity to GCs and possibly explains the lower BMI at older age.  

A third polymorphism consists of two linked point mutations in codon 22 (silent 

mutation, changing codon 22 from GAG to GAA, both coding for glutamic acid (E)) and in 

codon 23 (changes from AGG to AAG, resulting in an amino acid change from arginine (R) to 

lysine (K)) 18. We also studied this polymorphism in the elderly and showed an association with 

a relative resistance to GCs, better insulin sensitivity, as well as lower total and low-density 

lipoprotein (LDL)-cholesterol levels 19. In another population of elderly men, again ER22/23EK-

carriers tended to have lower total and LDL-cholesterol levels, and C-reactive protein (CRP) 

levels were significantly lower as well, which possibly reflects their better cardiovascular status 
20. Moreover, in this population the ER22/23EK variant was associated with longevity.  

Previously, a polymorphic TthIIII restriction site in the promoter region of the GR 

gene has been described 21, which was associated with an increased basal cortisol secretion 22. 

In the present study we investigated the exact sequence alteration of the TthIIII polymorphism 

and whether it is associated with altered sensitivity to GCs. We also studied the relationship 

between this promoter polymorphism and the N363S, ER22/23EK and BclI polymorphisms, as 

well as the clinical relevance of carrying  more than one of these polymorphisms. 
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Materials and Methods 

 

Subjects A total of 216 persons participated in the study, all participants in the Rotterdam 

Study (The Netherlands), who were at random selected from a population-based cohort study 

(7983 subjects) of the determinants of chronic disabling diseases in the elderly, as described 

previously 2.  

Subjects with acute, psychiatric or endocrine diseases, including diabetes mellitus treated with 

medication, were not invited. Compared to all participants of the Rotterdam study, there were 

no differences in age and gender distribution and cardiovascular risk factors. The subjects gave 

their written consent to participate in the study, which received the approval of the Medical 

Ethics Committee of the Erasmus University Medical School.  

Due to technical reasons genotype data on the TthIIII polymorphism were available of 209 

persons. Their age varied between 53 and 82 years (99 men and 110 women with mean ages 

of 67.7 ± 0.6 and 66.0 ± 0.6 years, respectively). Genotype data of all four polymorphisms 

were available in a total of 181 subjects. 

Anthropometric Measurements Body weight, height and waist to hip ratio of the subjects were 

measured, and the body mass index (BMI, kg/m2) was calculated. Blood pressure was 

measured in sitting position at the right upper arm with a random-zero sphygmomanometer. 

Dexamethasone suppression tests Two dexamethasone suppression tests (DST) were 

performed. As described previously 23, venous blood was obtained between 8 and 9 am after 

an overnight fast for serum cortisol and insulin measurements. Participants were instructed to 

ingest a tablet of 1 mg DEX at 11.00 p.m. The next morning fasting blood for cortisol, insulin, 

and DEX measurement was drawn by venapuncture at the same time as the previous morning.  

In order to get more information about the individual variability of the feedback sensitivity of 

the HPA-axis all 216 subjects were invited for a second DST with a lower dose DEX (0.25 mg) 

two and a half years later. Of a total of 155 subjects who agreed to participate in this second 

test, TthIIII genotypes were available (72 men and 83 women). 

Hormone Measurements Serum cortisol concentrations were determined using RIA-kits 

obtained from Diagnostics Products Corporation (Los Angeles, CA). Intra- and interassay 

variations were below 8.0 % and 9.5 % respectively. The DEX concentration was measured in 

a radioimmunoassay using antiserum obtained from IgG Corporation (Nashville, TN) to check 

for compliance and possible abnormalities in the metabolism of DEX. Intra- and interassay 

variations were below 8.5 % and 14.2 % respectively. Circulating insulin concentrations were 

determined using commercially available radioimmunoassays (Medgenix Diagnostics, Brussels, 

Belgium). Intra- and interassay variations were 8.0 % and 13.7 % respectively.  

Biochemical Measurements Glucose, total cholesterol, high-density lipoprotein (HDL)-cholesterol 

and triglycerides were measured using standard laboratory methods. Low-density lipoprotein 
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(LDL)-cholesterol was calculated using the following formula: LDL-cholesterol = total 

cholesterol - ((triglycerides/5) + HDL-cholesterol). 

Sequencing analysis A TthIIII recognition site possibly involved in the TthIIII RFLP 21 was 

identified in Genbank sequence NT_030707. A fragment including this site was PCR amplified 

from 20 random DNA samples using the primers (forward) 5’-TCCAGGAGTGGGACATAAAGCT-3’ 

and (reverse) 5’-CTTAGAAGCAGAGGTGGAAATGAAG-3’ (Biosource Europe S.A., Nivelles, 

Belgium). The PCR fragments were digested with TthIIII enzyme (Promega Corporation, WI, 

USA) and analyzed on agarose gels. The TthIIII site was indeed found to be polymorphic. 

Subsequently, the sequence of the fragments was analyzed: purified PCR products were 

sequenced on an ABI Prism 310 Genetic Analyzer, using a BigDyeTM Terminator Cycle 

Sequencing Ready Reaction DNA sequencing kit (Applied Biosystems, Nieuwerkerk aan den 

IJssel, Netherlands) according to manufacturer’s protocol. 

Genetic analysis DNA was extracted from peripheral blood leukocytes using standard 

techniques. Allelic discrimination was performed to determine genotypes, using TaqMan 

Universal PCR master mix (Applied Biosystems, Nieuwerkerk aan den IJssel, Netherlands), 

primers (see above), probes and a Taqman ABI Prism 7700 Sequence Detection System 

(Applied Biosystems). The primers used were 5’-TCCAGGAGTGGGACATAAAGCT-3’ (forward) 

and 5’-CTTAGAAGCAGAGGTGGAAATGAAG-3’ (reverse). Used probes were 5’-FAM-

TGTATTCAGACTCAGTCAAGGCAAGGACC-BHQ1-3’ (wild type, Biosource Europe) and 5’-VIC-

TGTATTCAGACTCAATCAAGGCAAGGACC-TAMRA-3’ (mutant, Applied Biosystems). Reaction 

components and amplification parameters were based on the manufacturer’s instructions using 

an annealing temperature of 64.8 °C and optimized concentrations for primers and probes of 

100 nmol/L and 100 pmol/µL, respectively. To confirm genotypes, restriction fragment length 

polymorphism (RFLP) analysis was also carried out, using TthIIII restriction enzyme and a 

digestion of 1 hour at 65 °C, and identical genotypes were found. Genotyping of the N363S and 

ER22/23EK polymorphisms were performed using RFLP analysis, as previously described 2, 19. 

The BclI polymorphism was determined using allelic discrimination, as also described earlier 17.  

Statistical analysis Data was analyzed using SPSS for Windows, release 10.1 (SPSS, Chicago, 

IL). Logarithmic transformations were applied to normalize variables and to minimize the 

influence of outliers. Differences in means between carriers and noncarriers of the 

polymorphisms were adjusted for age and sex and tested by ANCOVA using the general linear 

model procedure. Two age groups were constructed based on the median age to compare 

genotype frequencies between these age groups and the diffence was calculated using a Chi 

square test. Correlations between age and cortisol levels and glucocorticoid sensitivity were 

calculated using Spearman’s correlation coefficient analysis. 

Results are reported as mean ± SE. P values are two-sided throughout, and a p < 0.05 was 

considered to indicate a significant difference. 

 



Characterization of a promoter polymorphism 
 

65 

 

Results 

 

Identification of TthIIII polymorphism  
The previously described TthIIII restriction fragment length polymorphism was found to be a 

C/T single nucleotide polymorphism in the promoter of the GR gene, 3807 nucleotides 

upstream of the GR mRNA start (as in GenBank NM_000176). In previous studies the TthIIII 

RFLP was detected by Southern blotting of TthIIII -digested total genomic DNA. PCR-RFLP and 

sequence analysis showed that the site (3807 bp upstream of the GR mRNA start) was indeed 

polymorphic (ACT  ATT) .We observed allelic frequencies similar to those reported previously 

for the TthIIII polymorphism. Genotyping revealed in the study population of 209 subjects a 

total of 83 persons (39.7 %) who were homozygous for the C-allele (CC-carriers), 93 (44.5 %) 

who were heterozygous carriers of the C-allele and the T-allele (CT-carriers) and 33 (15.8 %) 

were homozygous for the T-allele (TT-carriers). The allelic frequency of the variant T-allele in 

this group was 38 %. Genotype distributions did not differ from those expected under Hardy-

Weinberg equilibrium conditions. 

 

Table 1:  Age, anthropometric parameters and blood pressures in noncarriers (CC), 

heterozygous TthIIII carriers (CT), and homozygous TthIIII carriers (TT). 

Genotype  

N 

TthIIII CC 

 83 

TthIIII CT 

 93 

TthIIII TT 

 33 

 

 Mean  SE Mean  SE Mean  SE P* 

Age   (yrs) 65.8 0.72 67.5 0.55 67.4 1.02 0.13 

Weight (kg) 77.0 1.53 73.6 1.16 75.1 2.31 0.22 

Height (cm) 170 1.00 168 0.95 168 1.75 0.74 

BMI  (kg/m2) 26.6 0.40 26.0 0.37 26.5 0.77 0.51 

WHR  0.92 0.11 0.92 0.10 0.95 0.02 0.20 

SBP (mmHg) 137.8 2.10 139.4 2.05 145.1 3.33 0.25 

DBP (mmHg) 75.0 1.13 74.2 1.02 77.7 1.78 0.20 

 

*Test for differences between the three genotypes. All parameters were adjusted for age and 

sex, with the exception of age. SE, standard error of the mean, BMI, body mass index, WHR, 

waist to hip ratio, SBP, systolic bloodpressure, DBP, diastolic bloodpressure. 
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Sexes were equally represented in the group of CC-carriers (47 % men), as well as in the 

group of CT-carriers (51% men) and TT-carriers (46% men). Age was not significantly different 

between the three TthIIII genotype groups nor did the genotype frequency differ between the 

younger and older half of the study population. .However, to rule out any influences of 

differences in age, all parameters were adjusted for age. No significant differences in 

anthropometric parameters or blood pressure between the groups were present, as shown in 

table  1. At the second examination after 2.5 years 155 of the initial 209 (74 %) individuals for 

whom genotypes were available participated: 59 of whom were CC-carriers (51% men), 74 CT-

carriers (45% men), and 22 TT-carriers (41% men).  

 
TthIIII polymorphism in relation to feedback sensitivity of the HPA-axis 
Table 2 shows the concentrations of early morning serum cortisol concentrations before and 

after administration of 1 mg DEX, the DEX concentration, and the cortisol suppression in 

reaction to DEX (∆ cortisol) in the three TthIIII genotype groups. Three subjects were taking 

estrogen-containing medication and because of the significant effect on CBG and therefore 

cortisol concentration they were excluded from the analysis. One male subject had not taken 

the 1 mg DEX tablet and was excluded as well. There were no significant differences between 

the CC-carriers and the CT- or TT-carriers in fasting cortisol concentrations, cortisol 

concentrations after 1 mg DEX, change in cortisol or in the DEX concentrations (table 2). In this 

study population no correlations between age and cortisol levels (r= -0.05, p= 0.51) or 

glucocorticoid sensitivity (r= -0.07, p= 0.32) were found. Although glucocorticoid sensitivity did 

not differ between men and women we corrected all analyses for sex (and age). 

Also shown in table 2 are the same parameters before and after the administration of 

0.25 mg DEX. Again, there were no significant differences in fasting cortisol, cortisol 

concentrations after 0.25 mg DEX, change in cortisol or in the DEX concentrations. 

 

TthIIII polymorphism in relation to insulin, glucose and lipid concentrations  
In order to analyze only data from participants with a normal glucose tolerance, subjects who 

had developed either hyperinsulinemia or diabetes mellitus after the inclusion in the study 

(fasting insulin values above 25 mU/L or glucose concentrations of more than 7.0 mmol/l 24) 

were excluded from this analysis (29 subjects excluded, n = 180, at the first examination). In 

these 180 subjects together, a significant increase in insulin concentrations in response to the 

administration of 1 mg DEX was noted (11.5 ± 0.39 mU/L before, and 17.2 ± 0.66 mU/L after 

DEX administration, respectively p<0.001). There were no differences in this increase in serum 

insulin concentrations between the CC, CT or TT genotype groups (p=0.78). Fasting glucose 

concentrations were not different between the three genotypes. At second examination, insulin 



Ta
bl

e 
2

 :
 C

or
tis

ol
 a

nd
 D

EX
 c

on
ce

nt
ra

tio
ns

 b
ef

or
e 

an
d 

af
te

r 
1 

an
d 

0.
25

 m
g 

D
EX

, r
es

pe
ct

iv
el

y,
 in

 n
on

ca
rr

ie
rs

 (
CC

),
 h

et
er

oz
yg

ou
s 

Tt
hI

II
I 

ca
rr

ie
rs

 (
CT

),
 

an
d 

ho
m

oz
yg

ou
s 

Tt
hI

II
I 

ca
rr

ie
rs

 (
TT

).
 

 G
en

ot
yp

e 
Tt

hI
II

I 
CC

 
Tt

hI
II

I 
 C

T 
Tt

hI
II

I 
 T

T 
 

 

 
M

ea
n 

 
SE

 
M

ea
n 

 
SE

 
M

ea
n 

 
SE

 
P*

 

N
um

be
r 

of
 p

ar
tic

ip
an

ts
 1

 m
g 

D
ST

 
81

 
 

92
 

 
32

 
 

 

  
Fa

st
in

g 
co

rt
is

ol
 (

nm
ol

/l)
 

51
4.

8 
16

.2
 

51
6.

9 
13

.7
 

50
4.

8 
22

.2
 

0.
91

 

  
Po

st
-D

EX
 c

or
tis

ol
 (

nm
ol

/l)
 

27
.4

 
2.

7 
28

.9
 

3.
0 

31
.3

 
7.

1 
0.

82
 

  ∆
 c

or
tis

ol
 (

nm
ol

/l)
 

48
1.

7 
15

.2
 

48
5.

5 
13

.6
 

47
3.

5 
24

.0
 

0.
88

 

  
D

EX
 (

nm
ol

/l)
 

7.
2 

0.
3 

7.
5 

0.
4 

7.
6 

0.
5 

0.
97

 

 
 

 
 

 
 

 
 

N
um

be
r 

of
 p

ar
tic

ip
an

ts
 0

.2
5 

m
g 

D
ST

 
59

 
 

74
 

 
22

 
 

 

  
Fa

st
in

g 
co

rt
is

ol
 (

nm
ol

/l)
 

56
6.

9 
19

.2
 

54
2.

0 
14

.4
 

51
1.

0 
24

.6
 

0.
15

 

  
Po

st
-D

EX
 c

or
tis

ol
 (

nm
ol

/l)
 

27
5.

1 
19

.0
 

25
8.

8 
15

.7
 

23
2.

0 
22

.2
 

0.
83

 

  ∆
 c

or
tis

ol
 (

nm
ol

/l)
 

29
1.

8 
19

.1
 

28
3.

1 
18

.0
 

27
9.

1 
28

.1
 

0.
96

 

  
D

EX
 (

nm
ol

/l)
 

2.
8 

0.
2 

2.
7 

0.
2 

3.
7 

0.
5 

0.
11

 

*T
es

t 
fo

r 
di

ff
er

en
ce

s 
be

tw
ee

n 
th

e 
th

re
e 

ge
no

ty
pe

 g
ro

up
s.

 A
ll 

pa
ra

m
et

er
s 

w
er

e 
lo

g 
tr

an
sf

or
m

ed
 a

nd
 a

dj
us

te
d 

fo
r 

ag
e 

an
d 

se
x.

 A
t 

th
e 

1 
m

g 
D

ST
, 

3 

pe
rs

on
s 

w
er

e 
ex

cl
ud

ed
 b

ec
au

se
 t

he
y 

ha
d 

be
en

 u
si

ng
 e

st
ro

ge
ns

 a
nd

 1
 p

er
so

n 
w

as
 e

xc
lu

de
d 

be
ca

us
e 

he
 h

ad
 n

ot
 t

ak
en

 D
EX

. 
D

ST
, 

de
xa

m
et

ha
so

ne
 

su
pp

re
ss

io
n 

te
st

, D
EX

, d
ex

am
et

ha
so

ne
, S

E,
 s

ta
nd

ar
d 

er
ro

r.
 



Chapter 4 
 

 68  

levels before and after the administration of 0.25 mg DEX in the total group of 114 subjects 

were not different between the three genotypes. 

Serum concentrations of total cholesterol (p=0.67), LDL-cholesterol (p=0.62), HDL-

cholesterol (p=0.99) and triglycerides (p=0.71) did not differ between CC-carriers and CT-

carriers or TT-carriers at first measurement. Also at the second measurement 2.5 years later no 

differences in lipid concentrations were found between TthIIII genotypes. 

 

Combination of  TthIIII and ER22/23EK polymorphisms 
The total number of participants of whom both the TthIIII and ER22/23EK polymorphisms 

could be determined was 197. A total of 16 persons were carriers of the ER22/23EK 

polymorphism. All 16 ER22/23EK carriers were also carrier of at least one T-allele of the TthIIII 

polymorphism. On the other hand, not all TthIIII CT- and TT-carriers were carriers of the 

ER22/23EK-variant. In order to determine the effects of the presence of both TthIIII and 

ER22/23EK polymorphisms in the same individual, we divided our study population into three 

groups: a group of noncarriers of both polymorphisms (TthIIII CC and ER22/23ER; n = 78), a 

group of carriers of TthIIII (CT or TT) but not of the ER22/23EK variant (n = 103) and a group 

of carriers of both polymorphisms (TthIIII CT or TT and ER22/23EK; n = 16).  

As shown in table 3, carriers of TthIIII CT/TT and ER22/23EK had a higher mean age. 

To take this into account in the analyses, we corrected for age (as well as for sex). There were 

no significant differences in anthropometric parameters between these three groups, however 

weight tended to be lower in carriers of both TthIIII T and ER22/23EK variants (table 3). 

Figure 1 shows the cortisol levels after the administration of 1 mg DEX, as well as the absolute 

decrease in cortisol levels. At baseline, there were no differences in fasting cortisol levels 

between the three genotype groups. However, post-DEX cortisol levels were significantly higher 

in the group of carriers of the combination of both polymorphisms (TthIIII T and ER22/23EK), 

compared to the two other groups (figure 1A). The decrease in cortisol levels was also 

significantly lower in carriers of both variants compared to the two other groups (figure 1B). 

There were no significant differences between the group of noncarriers of both polymorphisms 

and the group of carriers of the TthIIII T variant.  DEX concentrations were not different 

between the three genotype groups (p=0.18). 

In the 0.25 mg DST, which was performed 2.5 years later, we found no significant 

differences between the three groups in fasting (p=0.23) and post-DEX cortisol levels 

(p=0.69) or in change in cortisol (p=0.38).Fasting insulin levels tended to be lower in the 

carriers of both polymorphisms (TthIIII T and ER22/23EK: 8.7 ± 1.4 mU/L) compared to 

noncarriers (11.8 ± 0.6) and carriers of only the TthIIII T allele (11.6 ± 0.6). However, 

this did not reach statistical significance (p=0.12). The same pattern in fasting insulin 

levels was observed after the 1 mg DST, but this was also not significant (p=0.12). There 
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were no significant differences in changes in fasting insulin or glucose levels between the 

three groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 1: Glucocorticoid sensitivity in TthIIII-carriers and carriers of both the TthIIII and 

ER22/23EK variants. (a) Cortisol levels after 1 mg dexamethasone (DEX) were significantly 

higher in the group of carriers of the combination of both polymorphisms (TthIIII T and 

ER22/23EK, black bar), compared to the two other groups: noncarriers of both polymorphisms 

(white bar), and carriers of the TthIIII variant, but not of the ER22/23EK polymorphism 

(blocked bar). (b) The decrease in cortisol levels was significantly lower in carriers of both 

variants (black bar) compared to the other groups of noncarriers (white bar) and TthIIII T 

carriers (blocked bar). 

 

At the second measurement, before the 0.25 mg DST, we found significantly lower fasting 

insulin concentrations (p=0.001) in carriers of both polymorphisms (TthIIII T+ER22/23EK: 10.0 

± 1.4 mU/L) compared to the groups of noncarriers of both variants (14.8 ± 0.7) and TthIIII T 

carriers (15.2 ± 0.6). No statistically significant differences were found in fasting insulin levels 
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after the administration of 0.25 mg DEX (TthIIII T+ER22/23EK: 10.0 ± 1.3, TthIIII T: 14.1 ± 

0.7, noncarriers: 14.0 ± 0.8, p = 0.34), or change in insulin levels (p = 0.38). Fasting glucose 

levels tended to be lower in carriers of both polymorphisms (TthIIII T+ER22/23EK: 5.3 ± 0.2, 

TthIIII T: 5.5 ± 0.1, noncarriers: 5.7 ± 0.1, however this was not statistically significant (p = 

0.14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Cholesterol levels in TthIIII-carriers and carriers of both the TthIIII and ER22/23EK 

variants. (a) Total cholesterol levels were significantly lower in the group of carriers of the 

combination of both polymorphisms (TthIIII T and ER22/23EK, black bar), compared to the two 

other groups: noncarriers of both polymorphisms (white bar), and carriers of the TthIIII 

variant, but not of the ER22/23EK polymorphism (blocked bar). (b) Low density lipoprotein 

(LDL)-cholesterol levels were also significantly lower in carriers of both variants (black bar) 

compared to the other groups of noncarriers (white bar) and TthIIII T carriers (blocked bar). 
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Figure 2 shows the cholesterol concentrations in the three genotype groups. Total cholesterol 

levels were significantly lower in the group of ER22/23EK + TthIIII T carriers, compared to 

noncarriers of both variants and carriers of only the TthIIII T variant (figure 2A). LDL-

cholesterol levels were also significantly lower in carriers of both polymorphisms (figure 2B). No 

differences in HDL-cholesterol levels (p=0.96) and triglyceride concentrations (p=0.57) 

between the three groups were observed. 

Two and a half years later, at the second measurement, again total cholesterol levels 

were lower in carriers of both TthIIII T and ER22/23EK (5.6 ± 0.4 mmol/L) compared to 

noncarriers of the variants (6.5 ± 0.2 mmol/L) and carriers of TthIIII T only (6.7 ± 0.2 mmol/L, 

p<0.05, data not included in figure). Also, LDL-cholesterol levels showed again the same 

pattern  (noncarriers of both variants 4.8 ± 0.2 mmol/L, TthIIII T carriers: 4.9 ± 0.2 mmol/L 

and carriers of both TthIIII T and ER22/23EK: 3.9 ± 0.4 mmol/L, p<0.05). Frequency of the 

TthIIII T+ER22/23EK genotype tended to be higher in the older half of our population (13.3% 

versus 5.1% in the younger half), however this did not reach statistical significance (p= 0.13). 

 
TthIIII polymorphism and its relationship to N363S polymorphism 
In order to investigate the effects of carrying both the N363S polymorphism and TthIIII 

polymorphism, we divided our study population into four groups: a group of noncarriers of both 

polymorphisms (n = 79), a second group of carriers of TthIIII CT/TT without N363S  (n = 

113), a third group of carriers of N363S and TthIIII CC (n = 3) and a fourth group of carriers of 

N363S and TthIIII CT/TT (n = 8). Since the numbers of the last two groups were too low we 

could not perform a reliable statistical analysis on anthropometric parameters, pre- and post-

DEX cortisol levels, insulin levels, glucose levels and lipid concentrations. 

 

TthIIII polymorphism and its relationship to BclI polymorphism 
To study a possible interaction between the TthIIII and the BclI polymorphisms, we divided our 

study population into four groups: a group of noncarriers of both polymorphisms (TthIIII CC + 

BclI CC; n = 39), a group of carriers of TthIIII CT/TT and BclI CC (n = 39), a group of carriers 

of TthIIII CC and BclI CG/GG (n = 38) and a group of carriers of TthIIII CT/TT and BclI CG/GG 

(n = 78). We did not find any significant differences between these four groups in 

anthropometric parameters, pre- and post-DEX cortisol levels, insulin levels, glucose levels and 

lipid concentrations. 

 

Possible combinations of GR gene polymorphisms on the same allele 
To calculate the possibilities of these four polymorphisms occurring together on the same allele, 

we used a statistical method for haplotype reconstruction: the Phase Reconstruction Method 25. 

Figure 3 shows the alleles that were found: 1.wild type (no polymorphisms), 2. TthIIII T 

without any of the other three polymorphisms we studied in this population, 3. TthIIII T with 
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ER22/23EK, 4. TthIIII T with BclI G, 5. N363S without other polymorphisms, and 6. BclI G 

without other polymorphisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Overview of variant alleles of the glucocorticoid receptor gene. Schematic overview 

of the alleles of the GR gene present in the Caucasian population and their calculated 

frequencies, showing the polymorphisms we investigated in the present study. White squares 

indicate the wild type nucleotides, and the black squares indicate the variant nucleotides. Bp, 

basepairs.  

 

 

Discussion 

 

In the present study we identified the TthIIII polymorphism as a C toT mutation 3807 bp 

upstream of the mRNA start site of the GR gene. We did not observe an altered response in 

cortisol levels to the administration of DEX in carriers of the TthIIII polymorphism, which 

suggests that this variant is not related to a change in sensitivity to GCs. In line with this, we 
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did not observe any differences in anthropometric parameters, glucose and insulin 

concentrations or in lipid levels. 

However, we found that carriers of the ER22/23EK polymorphism, who previously had 

been shown to have a decreased GC sensitivity, and lower insulin, cholesterol 19 and CRP levels 
20, always carried the TthIIII T variant. Using a statistical method for haplotype reconstruction, 

we calculated that the ER22/23EK polymorphism is located on the same allele as the TthIIII T 

polymorphism. Carriers of both TthIIII T and ER22/23EK showed a reduced cortisol decrease in 

response to 1 mg DEX, as well as higher post-DEX cortisol levels compared to TthIIII T only 

carriers and noncarriers of both polymorphisms. This suggests that carriers of the combination 

of both variants are relatively resistant to the effects of GCs. In accordance, we found lower 

fasting insulin levels, as well as lower total and LDL-cholesterol levels in carriers of both TthIIII 

T and ER22/23EK variants. The carriers of both TthIIII T and ER22/23EK polymorphisms also 

had a higher mean age, which might be a result of their beneficial cardiovascular profile. This is 

supported by a recent study, in which we found that the ER22/23EK polymorphism is 

associated with longevity in elderly men 20. Thus, the TthIIII T variant seems not to be 

functional by itself, but only in combination with the ER22/23EK polymorphism. 

It is unclear whether the presence of the TthIIII T-allele contributes to the effects of 

ER22/23EK or whether it is a coincidence that the ER22/23EK mutation has arisen on a TthIIII 

T allele. The observation that there are no carriers of a TthIIII C allele with an ER22/23EK 

mutation on the same allele, suggests that the mutations in codons 22 and 23 have arisen de 

novo on the highly frequently occuring TthIIII T allele.  

Rosmond et al showed previously an elevated basal cortisol secretion in TthIIII CT- 

and TT-carriers compared to CC-carriers, without differences in anthropometry, insulin levels, 

glucose levels, cholesterol levels and systolic and diastolic blood pressure 22. We suggest that 

this previously observed association of TthIIII CT/TT with elevated basal cortisol secretion, 

might be explained by a relatively large number of ER22/23EK-carriers within the group of 

TthIIII T carriers of that study population. The frequency of TthIIII in the study population of 

Rosmond et al (284 middle-aged men) was: CC 49.6%, CT 41.4% and TT 9.0%, compared to 

CC 39.7%, CT 44.5% and TT 15.8% in our study population. However, the number of 

ER22/23EK-carriers in the population of Rosmond et al is unknown. The different findings on 

basal cortisol levels in our study could also be explained by the point of time at which the 

measurements were performed. In the previous study, TthIIII T-carriers were found to have 

elevated diurnal cortisol levels, which where most pronounced at night 22. In our study we only 

measured early morning cortisol levels.  Alterations in glucocorticoid sensitivity due to a 

receptor variation could result in a compensatory response of the HPA-axis to adjust the total 

cortisol production rate. However, we did not find any significant differences in basal cortisol 

levels. This could be due to the large interindividual variation in morning cortisol levels. 

However, the phenotypic changes we observed are more likely to be due to tissue specific 
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changes in the the receptor sensitivity. In future research it would be interesting to investigate 

whether the TthIIII T genotype with, as well as without the ER22/23EK variant is related to 

midnight cortisol levels, and whether any effects of the polymorphisms can be observed  in a 

stimulation test with ACTH. 

We did not find any interaction between TthIIII T and BclI G polymorphisms. Since 

the frequency of the combined carriage of TthIIII T and N363S polymorphism.s was low we 

cannot draw any conclusions with respect to glucocorticoid sensitivity or phenotpic changes.  

However, we found that the TthIIII T and N363S variants did not occur on the same allele in 

our population, which suggests that the original N363S mutation arose on a TthIIII C allele.  

Interestingly, the three previously described polymorphisms, ER22/23EK, N363S, and 

BclI, which all are associated with altered GC sensitivity, never occurred on the same allele. It 

is most likely, that the original de novo mutations all arose separately either on a wild type 

allele or, in the case of the ER22/23EK polymorphism, on a TthIIII variant allele. However, in 

vitro experiments are necessary to determine what the effects are of the presence of the 

exonic polymorphisms at the same allele, and whether these effects might be deleterious and 

therefore not compatible with life. Further research is necessary to clarify the mechanisms at 

the molecular level through which the known GR gene polymorphisms exert their effects. 

We conclude that the TthIIII polymorphism itself is not associated with a change in 

sensitivity to GCs. However, the ER22/23EK polymorphism is invariably linked to the TthIIII T 

variant, and this TthIIII T+ ER22/23EK haplotype is associated with a relative resistance to 

GCs, as well as lower total and LDL-cholesterol levels, and lower fasting insulin levels in our 

elderly population. The three previously described functional GR gene polymorphisms 

(ER22/23EK, N363S and BclI) appear not to occur on the same allele, which facilitates the 

interpretation of association studies on these variants. 
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Abstract 

 

We investigated whether a polymorphism in codons 22 and 23 of the glucocorticoid receptor 

gene (GAGAGG(GluArg) to GAAAAG(GluLys)) is associated with altered glucocorticoid  

sensitivity, anthropometric parameters, cardiovascular risk factors and sex steroid hormones. In 

a subgroup of 202 healthy elderly subjects of the Rotterdam Study, we identified 18 

heterozygotes (8.9 %) for the 22/23EK-allele (ER22/23EK-carriers). In the highest age group 

the number of ER22/23EK-carriers was higher (67-82 years: 12.9%) than in the youngest age 

group (53-67 years: 4.9%; p<0.05). Two dexamethasone suppression tests  with 1 and 0.25 

mg dexamethasone (DEX) were performed and the serum cortisol and insulin concentrations 

were compared between ER22/23EK-carriers and non-carriers. After administration of 1 mg 

DEX the ER22/23EK group had higher serum cortisol concentrations (54.8 ± 18.3  vs. 26.4 ± 

1.4 nmol/L; p<0.0001), as well as a smaller decrease in cortisol (467.0 ± 31.7 vs. 484.5 ± 10.3 

nmol/L; p<0.0001). ER22/23EK-carriers had lower fasting insulin concentrations (p<0.001), 

total (p<0.02) and LDL-cholesterol concentrations, (p<0.01). No other differences between the 

genotypes were found in anthropometric parameters, blood pressure and circulating IGF-BP1, 

HDL-cholesterol, triglycerides or sex hormones. Our data suggest that carriers of the 22/23EK 

allele are relatively more resistant to the effects of glucocorticoids with respect to the sensitivity 

of the adrenal feedback mechanism than non-carriers, resulting in a better metabolic health 

profile. 
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Introduction 

 

Glucocorticoids (GC) are important regulators in almost every tissue in the human body and 

their effects are mediated by the glucocorticoid receptor (1). A complete inability of GCs to 

exert their effects on target tissues is probably not compatible with life. However, several 

patients have been described with partial forms of GC resistance. They show a wide spectrum 

of clinical symptoms, such as hypertension, hypokalemic alkalosis (2), fatigue and 

hyperandrogenism (3). Vingerhoeds et al. reported a father and a son with GC resistance (2) 

and from then on 20 additional patients and family members with this syndrome have been 

described (4). 

Besides these symptomatic patients with relative glucocorticoid resistance, within the 

normal population a considerable variability in the feedback sensitivity of the hypothalamo-

pituitary-adrenal (HPA-)axis was also demonstrated (5). The molecular mechanisms underlying 

this variation in GC- sensitivity are still largely unknown.  In the symptomatic patients with 

familial forms of glucocorticoid resistance missense mutations in the ligand binding domain of 

the glucocorticoid receptor (GR) gene causing decreased ligand binding affinity have been 

described (6, 7), as well as a deletion of four base pairs at the boundary of exon 6 and intron 

6, causing loss of a splice site and a 50% reduction of receptor number per cell resulting also in 

GC-resistance (8). Within the normal population, several  polymorphisms in the GR gene have 

been reported (9). One of these polymorphisms consists of a point mutation in codon 363 in 

exon 2 of the GR gene, resulting in an asparagine to serine amino acid change, and was shown 

to be  associated with an increased sensitivity to GCs in response to dexamethasone (DEX) 

(10). Another polymorphism consists of  two linked point mutations separated by one base pair 

in codon 22 and 23 in exon 2 of the GR gene. The mutations are located at cDNA positions 198 

and 200, respectively. The first mutation is silent, changing codon 22 from GAG to GAA, both 

coding for glutamic acid (E). The second mutation changes codon 23 from AGG to AAG, 

resulting in an amino acid change from arginine (R) to lysine (K) (9). These mutations did not 

seem to alter the activity of the GR in 'in vitro' experiments (11). However, the clinical 

relevance of this polymorphism has not been studied. Within the context of an ongoing 

population based cohort study of diseases in the elderly (The Rotterdam Study) we investigated 

whether in vivo there were any differences between  ER22/23EK-carriers and non-carriers in 

the sensitivity of the HPA- axis to the overnight administration of 1 mg or 0.25 mg 

dexamethasone, as well as in some anthropometric parameters, cardiovascular risk factors  and 

in sex steroid hormone levels. 
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Subjects and Methods 

 

Subjects  A total of 202 persons participated in the study. Their age varied between 53 and 82 

years (98 men and 104 women with mean ages of 67.7 ± 0.6 and 65.9 ± 0.6 years, 

respectively). They  were living in a suburb of Rotterdam, The Netherlands. These subjects 

were participants in the Rotterdam Study, a population-based cohort study (7983 subjects) of  

the determinants of chronic disabling diseases in the elderly and were at random selected. 

Subjects with acute, psychiatric or endocrine diseases, including diabetes mellitus treated with 

medication, were not invited. Compared to all participants of the Rotterdam study, there were 

no differences in age and gender distribution and cardiovascular risk factors. The subjects gave 

their written consent to participate in the study which received the approval of the Medical 

Ethics Committee of the Erasmus University Medical School. In order to get more information 

about the individual variability of the feedback sensitivity of the HPA-axis all 202 subjects were 

invited for a second DST with a lower dose DEX (0.25 mg) two and a half years later. 149 

subjects agreed to participate in this second test (72 men and 77 women ). 

Anthropometric Measurements  Body weight, height and waist to hip ratio of the subjects were 

measured, and the body mass index (BMI, kg/m2) was calculated. Blood pressure was 

measured in sitting position at the right upper arm with a random-zero sphygmomanometer. 

Dexamethasone suppression tests  The two dexamethasone suppression tests (DST) were 

performed as described previously (5). In brief, venous blood was obtained between 8 and 9 

am after an overnight fast for serum cortisol and insulin measurements. Participants were 

instructed to ingest a tablet of 1 mg  (and 0.25 mg for the second DST) DEX at 11.00 pm. The 

next morning fasting blood was drawn by venapuncture at the same time as the previous 

morning. To check for compliance and possible abnormalities in the metabolism of DEX, the 

DEX concentration was also measured in a radioimmunoassay using antiserum obtained from 

IgG Corporation (Nashville,TN). Intra- and interassay variations were below 8.5 % and 14.2 % 

respectively. 

Hormonal Measurements Serum cortisol concentrations were determined using RIA-kits 

obtained from Diagnostics Products Corporation (Los Angeles, CA). Intra- and interassay 

variations were below 8.0 % and 9.5 % respectively. Circulating insulin and cortisol binding 

globulin (CBG) concentrations were determined using commercially available 

radioimmunoassays (Medgenix Diagnostics, Brussels, Belgium). Intra- and interassay variations 

were 8.0 % and 13.7 % respectively. Estradiol, androstenedione and dehydroepiandrosterone-

sulfate (DHEAS) concentrations were determined using RIA-kits obtained from Diagnostics 

Products Corporation. Intra- and interassay variations; estradiol: 7.0 % and 8.1 %, 

androstenedione: 8.3 % and 9.2 %, DHEAS: 5.3% and 7.0%. Sex hormone binding globulin 

(SHBG) was assayed with a commercially available immunoradiometric assay (Diagnostics 

Products Corporation; intra- and interassay variations were 3.6 % and 6.9 % respectively). 
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Testosterone was measured with a non-commercial radioimmunoassay (intra- and interassay 

variations 3.6 % and 6.9 %). Commercially available immunoradiometric assays were used for 

the measurement of insulin-like growthfactor-binding protein-1 (IGF-BP1, Diagnostic System 

Laboratories Inc.; intra- and interassay variations 4.0 % and 6.0 %). Insulin resistance (IR) 

and beta cell function (B) were estimated using the Homeostasis Model Assessment (HOMA), 

as previously described (12, 13). 

Biochemical Measurements  Glucose, total cholesterol,  high density lipoprotein (HDL)-

cholesterol and triglycerides were measured using standard laboratory methods. Low density 

lipoprotein (LDL)-cholesterol was calculated using the following formula: LDL-cholesterol = 

total cholesterol - ((triglycerides/5) + HDL-cholesterol). 

Genetic analysis Restriction fragment length polymorphism analysis was carried out to 

determine GR genotypes. DNA was extracted from peripheral blood leukocytes using standard 

techniques. PCR amplification of the GR gene was carried out employing primer sequences and 

amplification conditions as described previously (9). The PCR-products were digested with 1 U 

Mnl I (New England Biolabs, Inc) at 37 ºC for 1 hour. Mnl I cleaves at 5'-CCTC(N)7-'3 and at 3'-

GGAG(N)6-'5. Fragments were visualised with ethidium bromide on a 3% agarose -gel (MP-

Boehringer, Mannheim). We re-analysed the 18 heterozygous and 10 wild type samples and 

found identical genotypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ER22/23ER yielded a 163 and a 142 bp fragment, the ER22/23EK appeared as three 

fragments of 177, 163 and 142 bp, while the EK22/23EK consisted of a 177 and 163 bp 

fragment. (The homozygously affected individual was discovered in a related population study 

in young children. Preliminary investigations did not reveal specific anthropometric phenotypic 

changes in this individual) 

Figure 1: Representative 
electrophoretic pattern of 
the GR22/23 genotype 
analysed by polymerase 
chain reaction - restriction 
fragment length  poly-
morphism (PCR-RFLP) from 
three subjects with the 
wildtype ER22/23ER (WW, 
lane 1), heterozygous 
ER22/23EK (WM, lane 2) 
and homozygous EK22/23EK 
(MM, lane 3) genotypes.  

- 177 bp
- 163 bp

- 142 bp

  W/W  W/M   M/M
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Statistical analysis Data were analyzed using SPSS for Windows, release 9.0 (SPSS, Chicago, 

IL). Logarithmic transformations were applied to normalize variables and to minimize the 

influence of outliers. Differences between the ER22/23EK-carriers and the non-carriers were 

adjusted for age and sex and tested by ANCOVA using the general linear model procedure. A 

paired samples t-test was used to compare changes in insulin concentrations before and after 

the administration of DEX in all subjects. Results are reported as mean ± SE.  

Pearson’s correlation coefficients were used to calculate correlations between cortisol, insulin 

and cholesterol after correction for age, sex and, if necessary, for BMI. The two age-groups 

were chosen based on the median age (67.02). Comparison of the frequencies of the 

genotypes between different age-groups was carried out using a Chi-square  test. P values are 

two-sided throughout, and a p < 0.05 was considered to indicate a significant difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2: Structure of the human glucocorticoid receptor gene, mRNA and protein and its 

functional domains. The position of an arginine to lysine change at codon 23 as a result of the 

G to A point mutation and the silent point mutation of a G to A at codon 22 are indicated. N-

TERM, NH2- terminal domain, DBD, DNA binding domain, HBD, hormone binding domain.  
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Results 

 

Restriction fragment length polymorphism analysis revealed in the study population of 202 

subjects a total of 18 persons (8.9 %) who were heterozygous for the polymorphism in codon 

22/23 (see also Figures 1 and 2).  No individuals homozygous for this polymorphism were 

found in this group. The allele frequency of the variant allele in this group was 4.5 %. 

Genotype distributions did not differ from those expected under Hardy-Weinberg equilibrium 

conditions, however we cannot say this with absolute certainty, as we did not find any 

homozygous ER22/23EK-carriers. Sexes were equally represented in the group of ER22/23EK-

carriers (9 men and 9 women), as well as in the group of non-carriers (89 men and 95 

women). The ER22/23EK-carriers were 2.7 years older compared to non-carriers, which did not 

reach statistical significance  (Table 1; p= 0.09). However, in the age group between 67 and 82 

years (n= 101) the number of ER22/23EK-carriers was higher (12.9 %) than in the age group 

between 53 and 67 (n=101, 4.9 % ER22/23EK-carriers; p< 0.05). To rule out the influences of 

differences in age, all parameters were adjusted for age. No significant differences in 

anthropometric parameters or blood pressure  between the groups were present, as shown in 

Table 1. At the second examination after 2.5 years 149 of the initial 202 individuals participated 

(74 %), 13 of whom were heterozygous for the codon 22/23 polymorphism. Also in this group 

of ER22/23EK-carriers the sexes were equally represented (6 men and 7 women). The group of 

non-carriers now consisted of 66 men and 70 women. 

 
Table 1: Anthropometric parameters and blood pressure  in non-carriers  (n = 184)  and 

ER22/23EK-carriers (n = 18) at baseline 

 Non-carriers ER22/23EK-carriers  

 Mean SE Range Mean SE Range P* 

Age (years) 66.5 0.44 53.0-81.6 69.2 1.68 53.5-82.4 0.09 

Height  (cm) 170 0.01 146-189 169 0.02 152-175 0.85 

Weight (kg) 74.7 1.15 45.8-121.0 71.9 1.97 43-89.9 0.69 

BMI (kg/m2) 26.4 0.28 16.4- 43.1 25.4 0.85 16.4-32.5 0.25 

WHR  0.92 0.01 0.66-1.12 0.94 0.02 0.75-1.08 0.62 

SBP (mmHg) 138.9 1.42 99-185 140.2 5.03 96-178 0.86 

DBP (mmHg) 74.7 0.73 48-97 77.1 2.95 44-97 0.42 

 

*Test for the difference between non-carriers and ER22/23EK-carriers. All parameters were log 

transformed and, with the exception of age, adjusted for age. SE, Standard Error of the mean, 

BMI, body mass index, WHR, waist to hip ratio, SBP, systolic bloodpressure, DBP, diastolic 

bloodpressure. 
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Feedback sensitivity of the HPA-axis 
Table 2 shows the concentrations of early morning serum cortisol concentrations before and 

after administration of 1 mg DEX, the DEX concentration, and the cortisol suppression in 

reaction to DEX (∆ cortisol). Three subjects were taking estrogen-containing medication and 

because of the significant effect on CBG and, therefore, cortisol concentration, they were 

excluded from the analysis (1 of the ER22/23EK carriers and 2 of the non-carriers)14. One male 

subject had not taken the 1 mg DEX tablet and was excluded as well. There were no 

differences between the non-carriers and the ER22/23EK-carriers in fasting cortisol 

concentrations. However, the cortisol concentrations after the 1 mg  DST were significantly 

higher in ER22/23EK-carriers than in non-carriers (54.8 ± 18.3 in ER22/23EK-carriers and 26.4 

± 1.4 nmol/l in non-carriers, p< 0.0001).  

 

Table 2:  Cortisol and DEX concentrations before and after 1 and 0.25 mg DEX, respectively, in 

non-carriers (n= 181 at first examination and n=136 at second examination)  and in 

ER22/23EK-carriers (n= 17 at first examination and n=13 at second examination) 

 
Non-carriers ER22/23EK-carriers  

Mean SE Range  Mean SE Range  P* 

1 mg DST   

Fasting cortisol (nmol/l) 514.8 10.7 41-981 521.8 24.9 308-717 0.56 

PostDEX cortisol (nmol/l) 26.4 1.4 2-187 54.8 18.3 11-265 <0.0001 

∆ cortisol (nmol/l) 484.5 10.3 39-856 467.0 31.7 138-674 <0.0001 

DEX (nmol/l) 7.40 0.27 0.8-18.4 6.90 0.85 1.2-12.9 0.26 

   

0.25 mg DST   

Fasting cortisol (nmol/l) 545.3 12.4 47-914 527.2 30.3 325-710 0.78 

PostDEX cortisol (nmol/l) 259.5 12.4 14-630 267.5 31.3 83-418 0.57 

∆ cortisol (nmol/l) 285.8 13.5 -64-765 259.7 40.7 31-507 0.23 

DEX (nmol/l) 2.85 0.13 0.1-8.7 2.88 0.52 0.6-7.1 0.69 

 

*Test for the difference between non-carriers and ER22/23EK-carriers. All parameters were log 

transformed and adjusted for age and sex. SE, Standard Error of the mean, DEX, 

dexamethasone, DST, dexamethasone supression test. Three subjects were taking estrogen-

containing medication and were excluded from the analysis (1 ER22/23EK carrier and 2 non-

carriers). One non-carrier had not taken the 1 mg DEX tablet and was excluded as well for that 

analysis. 
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The absolute decrease of serum cortisol concentrations after dexamethasone, as well as the 

ratio post-DSTcortisol /fasting cortisol, were significantly different (∆  cortisol: 467.0 ± 31.7 in 

ER22/23EK-carriers and 484.5 ± 10.3 nmol/l in non-carriers, p< 0.0001, ratio postDEX/ preDEX 

cortisol: 0.111 ± 0.04 in ER22/23EK-carriers and 0.054 ± 0.00 in non-carriers, p=0.003). The 

significant difference in post-DEX cortisol concentrations was still present after inclusion of the 

three estrogen-taking subjects. The actual DEX concentrations did not differ in both groups, so 

the higher post DEX cortisol levels and the smaller change in cortisol after DEX in the 

ER22/23EK-carriers were not due to differences in the metabolism of DEX. Also, fasting 

cortisol-binding globulin (CBG) levels were not different in ER22/23EK-carriers and in non-

carriers (data not shown).  

Also shown in Table 2 are the same parameters before and after the administration of 

0.25 mg DEX. Again, there were no significant differences in fasting cortisol. The post-DEX 

cortisol concentrations and the decrease in cortisol concentrations after the administration of 

0.25 mg DEX, as well as the ratio post/pre-DEX cortisol were not significantly different in 

ER22/23EK-carriers from those in the non-carriers.  
 
Insulin and glucose concentrations 
Figure 3a shows the fasting insulin concentrations before and after the administration of 1 and 

0.25 mg DEX, respectively. In order to be certain that only the data from subjects with a 

normal carbohydrate tolerance were analysed, subjects who had developed either 

hyperinsulinaemia or diabetes mellitus after the inclusion in the study (fasting insulin values 

above 25 mU/L or glucose concentrations of more than 7.8 mmol/l) were excluded from this 

analysis (17 non-carriers excluded, n= 167, and 3 ER22/23EK-carriers excluded, n=15 at the 

first examination). In these 182 subjects together, a significant increase in insulin 

concentrations in response to the administration of 1 mg DEX was noted (11.5 ± 5.15 mU/L 

before, and 17.2 ± 8.41 mU/L after DEX administration, respectively p<0.001). There were no 

differences in this increase in serum insulin concentrations between the control group and the 

ER22/23EK-carriers (5.7 ± 0.6 versus 5.5 ± 1.3 mU/L). 

The fasting insulin concentrations tended to be lower in ER22/23EK-carriers than in 

non-carriers (p=0.06). The same applied to the fasting serum insulin levels measured after 1 

mg DEX (p=0.07). These differences in post DEX insulin concentrations were not due to 

differences in DEX concentrations between the two groups. Fasting glucose concentrations 

were not different between the non-carriers and ER22/23EK-carriers (5.71 ± 0.05 versus 5.69 

± 0.16 mmol/L, respectively). 

At second examination, 2.5 years later, the fasting insulin levels in ER22/23EK-carriers 

were significantly lower than in the non-carriers (p<0.001). Insulin levels decreased in the total 

group of 115 subjects after the administration of 0.25 mg DEX (14.7 ± 0.45 before, and 13.9  

± 0.50 mU/L after DEX administration, respectively, p<0.01). There were no differences in this 
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decrease in insulin levels between the non-carriers and the ER22/23EK-carriers. After the 

administration of 0.25 mg DEX insulin concentrations were not significantly different in the 

ER22/23EK-carriers from those in the non-carriers (p=0.11). Baseline (fasting) glucose levels 

tended to be lower in the ER22/23EK-carriers than in the non-carriers (5.3 ± 0.20 and 5.6 ± 

0.06 mmol/l, respectively; p=0.07). To assess insulin resistance and secrection we used the 

HOMA-insulin resistance (HOMA-IR) and beta cell function (HOMA-B) index, respectively. As 

shown in figure 3b, at first examination, ER22/23EK-carriers had significantly lower HOMA-IR 

scores (2.3 ± 0.33) than non-carriers (3.0 ± 0.11; p<0.05). At the second measurement the 

same pattern of HOMA-IR was observed (ER22/23EK-carriers: 2.4 ± 0.39 vs. non-carriers 3.8 ± 

0.14; p<0.01). HOMA-B scores tended to be lower in ER22/23EK-carriers compared to non-

carriers at both observations (carriers: 84.8 ± 11.6, non-carriers:108.2 ± 3.5; p<0.06 and at 

second examination: carriers: 119.0 ± 17.4 vs. 148.6 ± 4.7; p<0.07). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: A. Fasting insulin concentrations in non-carriers (n= 167) and ER22/23EK-carriers 

(n= 15) before 1 mg DEX at first examination. Insulin concentrations tended to be lower in 

ER22/23EK-carriers compared to non-carriers (p=0.06). On the right, baseline insulin 

concentrations in non-carriers (n= 105) and ER22/23EK-carriers (n= 10) at second examination 

(2,5 years later). Fasting insulin concentrations were significantly lower in ER22/23EK-carriers 

(p<0.001). B. HOMA-IR scores in non-carriers  and ER22/23EK-carriers before 1 mg and 0.25 

mg DEX. At both measurements ER22/23EK-carriers were significantly less insulin resistant. All 

parameters were log transformed and adjusted for age. Subjects with fasting insulin>25mU/l or 

fasting glucose >7.8 mmol/l were excluded from the calculation; 3 ER22/23EK-carriers and 17 

non-carriers were excluded from the first test and 3 ER22/23EK-carriers and 31 non-carriers 

were excluded from the second test. 
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Risk Factors for coronary heart disease and diabetes mellitus 
In table 3 serum concentrations of IGF-BP1, total cholesterol, LDL-cholesterol, HDL-cholesterol 

and triglycerides are shown. There were no differences between non-carriers and ER22/23EK-

carriers in IGF-BP1 levels or in HDL-cholesterol and triglyceride concentrations. However, total 

cholesterol levels were significantly lower in ER22/23EK-carriers than in non-carriers (6.86 ± 

0.09 in non-carriers, versus 6.12 ± 0.25 mmol/L in ER22/23EK-carriers, p=0.02), as well as 

LDL-cholesterol levels (5.11 ± 0.08 mmol/L in non-carriers, versus 4.31 ± 0.25 mmol/L in 

ER22/23EK-carriers, p< 0.01) At the second examination after 2.5 years serum cholesterol 

concentrations were again lower (total cholesterol: 6.61 in non-carriers, versus 5.64 mmol/L in 

ER22/23EK-carriers p=0.01, LDL-cholesterol: 4.87 in non-carriers, versus 3.87 in ER22/23EK-

carriers p<0.01, not shown in table). 

 

 

Table 3:  Risk factors for coronary heart disease and Diabetes Mellitus at first examination in 

non-carriers (n= 184) and ER22/23EK-carriers (n= 18) 

 
 Non-carriers ER22/23EK-carriers  
 Mean SE Range Mean SE Range P  

    

IGF-BP 1 (µg/l) 19.3 1.59 1-154 18.8 2.91 2.0-43.1 0.57 

Total chol (mmol/l) 6.86 0.09 2.80-10.32 6.12 0.25 4.31-7.41 0.02 

LDL-chol (mmol/l) 5.11 0.08 0.91-8.31 4.31 0.25 2.65-6.09 0.01 

HDL-chol (mmol/l) 1.36 0.03 0.72-2.51 1.43 0.14 0.84-2.83 0.63 

Triglycerides (mmol/l) 1.91 0.07 0.47-7.42 1.93 0.33 0.76-7.00 0.67 

 

Test for the difference between non-carriers and ER22/23EK-carriers. All parameters were log 

transformed. and adjusted for age. SE, Standard Error of the mean. IGF-BP1, insulin-like 

growthfactor-binding protein-1, chol, cholesterol, LDL, low density lipoprotein, HDL, high 

density lipoprotein 

 

 

Sex hormones 
Table 4 shows the fasting concentrations of sex hormones for men and women separately. No 

differences between the non-carriers and the ER22/23EK-carriers in the concentrations of 

estradiol, SHBG, androstenedione, DHEA-S or testosterone were detected. Again, the three 

subjects who were taking estrogen-containing medication were excluded from the analysis (1 

female ER22/23EK carrier and 2 female non-carriers). 
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Correlations 
Degree of cortisol suppression with 1 mg and 0.25 mg DEX positively correlated with fasting 

insulin (r = 0.19; p<0.02, r = 0.22; p<0.03, resp.) and HOMA-IR (r = 0.21; p<0.01, r = 0.23; 

p<0.02, resp.) after adjustment for age and sex. These correlations persisted also after 

additional correction for BMI (figure 4). No correlations were found between decrease in 

cortisol and insulin response, total HDL- and LDL-cholesterol, triglycerides or HOMA-B scores. 

Baseline insulin concentrations correlated positively with triglycerides (r = 0.31; p<0.0001), 

while an inverse relation was found with hdl-cholesterol (r = -0.24; p<0.005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

 

In this population study in the elderly involving 202 individuals we found 18 subjects who were 

heterozygous for the ER22/23EK polymorphism (8.9 %). Genotype distribution was in Hardy 

Weinberg equilibrium, as far as we can say without finding any homozygous ER22/23EK-
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carriers, suggesting this sample to be at random. The ER22/23EK-carriers had higher serum 

concentrations of cortisol and a smaller decrease in cortisol concentrations after the 

administration of 1 mg DEX than non-carriers. We would have expected to find a slight 

resistance more easily in a 0.25 mg DST than in a 1 mg test. We indeed found the same 

pattern of smaller decrease in cortisol and higher post-DEX cortisol levels in ER22/23EK-carriers 

compared to non-carriers in the 0.25 mg DST. However, it was not significant, possibly due to 

the lower number of subjects who participated in the second test. Furthermore,  ER22/23EK-

carriers tended to have lower insulin levels before and after a 1 mg DST. These data were 

partially confirmed two and a half years later with a 0.25 mg DST. Fasting insulin 

concentrations were again lower in ER22/23EK-carriers than in non-carriers and fasting glucose 

levels tended to be lower in ER22/23EK-carriers as well. In line with these data, HOMA-IR 

values were lower in ER22/23EK-carriers, which indicates that they are more sensitive to 

insulin. Furthermore, cortisol suppression after DEX correlated with fasting insulin and HOMA-

IR, which was still significant after adjustment for BMI. These observations suggest that this 

polymorphism in the GR gene is associated with a slight resistance of the feedback regulation 

of the HPA-axis. 

 This relative resistance also results in a lower effect of cortisol on glucose 

metabolism, resulting in slightly lower glucose concentrations, as well as lower insulin levels. 

This favourable metabolic profile is supported by the observation that total and LDL-cholesterol 

concentrations were significantly lower in the ER22/23EK group than in the group of non-

carriers. This was confirmed at the second examination. These lower cholesterol concentrations 

can possibly be partially explained by  a reduced cortisol effect. GCs have been demonstrated 

to influence cholesterol levels by several mechanisms, such as regulation of the uptake of LDL 

by the liver (15) and influencing human adipose tissue lipoprotein lipase gene expression (16). 

These outcomes of a relative GC resistance, together with the lower insulin, total and LDL-

cholesterol and slightly lower serum glucose concentrations, indicate that ER22/23EK-carriers 

have a healthier metabolic profile than non-carriers. In this respect, our observation of a 

significantly higher percentage of ER22/23EK-carriers in the older age group supports the 

finding of a beneficial metabolic effect of this GR polymorphism. 

 We found no other differences between the genotypes in anthropometric parameters, blood 

pressure, and serum levels of IGF-BP1, HDL-cholesterol, triglycerides or sex hormones. 

Especially this last observation is probably in line with the fact that the ER22/23EK 

polymorphism in the GR gene is associated with a very mild degree of resistance, because 

other features previously described in patients with symptomatic glucocorticoid resistance (2) 

(3) such as hypertension and hypokalemia (related to compensatory ACTH-mediated 

mineralocorticoid overproduction) or acne and a male pattern of baldness (related to 

overproduction of adrenal androgens) were not observed. We have previously reported (17) 5 

patients who were diagnosed with cortisol resistance. At that time, to get a first impression of 
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the effect of the ER22/23EK polymorphism we had only genotyped 129 out of the group of 216 

subjects who underwent a DEX suppression test. By completing the genotyping of the whole 

group and finding these subtle indications for cortisol-resistance,  we might have to interpret 

the results found at that time differently. We reported three participants who had abnormal 

post-DEX cortisol values when considering the limit of 140 nmol/L for normal suppressed 

cortisol values after 1 mg DST. This cut-off value is clinically used to screen for Cushing’s 

disease, but is probably not useful for determining cortisol insensitivity. Now we are showing 

that the 18 ER22/23EK-carriers had a significantly smaller mean cortisol response to DEX, 

indicating a slight resistance to the negative feedback of cortisol. We also reported 2 out of 5 

patients, who had a symptomatic cortisol-resistance syndrome and carried the ER22/23EK-

polymorphism (17). We cannot say whether this polymorphism was involved in causing the 

syndrome, but it is possible that it was at least a factor, together with other causative factors. 

Previously, we have reported a polymorphism located in codon 363 in exon 2 of the 

GR, which was associated with a increased sensitivity to cortisol (10). The number of N363S-

carriers was not significantly different between the groups of ER22/23EK-carriers  and non-

carriers (1 (5.5%) N363S-carrier vs 12 (6.5%) N363S-carriers, p=0.32). Moreover, exclusion of 

the N363S carriers did not alter the results. 

 In transient transfection assays in COS-1 cells, de Lange et al (11) did not find 

differences in the way the 23K variant receptor regulated transcription from a number of 

different promotors. While the polymorphism is not located in the core of the τ1 transactivation 

domain (variably defined as amino acid 77 to 262 (18) or 98 to 305 (19)), it is possible that the 

effects described here are caused by altered interactions with other proteins, that do not play a 

role in the COS-1 system. 

 In summary, in this study we observed that subjects who were heterozygous for the 

22/23EK allele had significantly higher post DEX cortisol concentrations, a smaller decrease in 

cortisol concentrations, lower insulin and slightly lower fasting glucose levels, as well as slightly 

lower post DEX insulin levels than subjects without this GR variant. Furthermore, ER22/23EK-

carriers had lower total and LDL-cholesterol levels and were overrepresented in the older age 

group. These data suggest that ER22/23EK-carriers are relatively more 'cortisol-resistant' than 

non-carriers, which results in a better metabolic health profile. The exact mechanism through 

which the ER22/23EK variant of the glucocorticoid receptor establishes these favourable effects 

remains unclear and is one of the subjects of our ongoing research. 
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Abstract 

 

Glucocorticoids play an important role in determining body composition. A polymorphism of the 

glucocorticoid receptor gene (in codons 22 and 23) has previously been found to be associated 

with relative glucocorticoid resistance, low cholesterol levels, and increased insulin sensitivity. 

In this study we investigated whether this ER22/23EK polymorphism is associated with 

differences in body composition and muscle strength. We studied a cohort of 350 subjects who 

were followed from age 13 until 36 years. We compared noncarriers and carriers of the 

ER22/23EK variant in anthropometric parameters, body composition, and muscle strength, as 

measured by arm pull tests and high jump from standing. We identified 27 (8.0 %) 

heterozygous ER22/23EK-carriers. In males at 36 yrs of age, we found that ER22/23EK-carriers 

were taller, had more lean body mass, greater thigh circumference, and more muscle strength 

in arms and legs. We observed no differences in body mass index (BMI) or fat mass.  In 

females, waist and hip circumferences tended to be smaller in ER22/23EK-carriers at the age of 

36, but no differences in BMI were found. Thus, the ER22/23EK polymorphism is associated 

with a sex-specific, beneficial body composition at young adult age, as well as greater muscle 

strength in males.  
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Introduction 

 

Glucocorticoids are important regulators in numerous tissues throughout the human body and 

they also influence body composition. Their effects are mainly mediated by the glucocorticoid 

receptor (GR), a ligand-activated transcription factor 1. Thus, changes in the gene coding for 

this receptor can play an important role in determining glucocorticoid sensitivity 2. Within the 

normal population, several polymorphisms in the GR gene have been described 3. One of these 

polymorphisms - N363S - was shown to be associated with an increased sensitivity to 

glucocorticoids and a higher body mass index 4, as well as central obesity in males 5. Lin et al 6 

confirmed this finding of higher BMI in N363S carriers and showed an allele-dosage effect of 

this polymorphism. In contrast, several other studies showed no effect on BMI 7, 8. A BclI 

polymorphism has previously been shown to be associated with a relative hypersensitivity to 

glucocorticoids in vivo 9, an increased cortisol response to a standardized lunch, and abdominal 

obesity in middle-aged subjects 10. 

 Previously, we identified another polymorphism that consists of two linked point 

mutations in codons 22 and 23 of the GR gene (GAG AGG  GAA AAG). The first mutation in 

codon 22 is silent, both GAG and GAA coding for glutamic acid (E). The second mutation 

changes codon 23 from AGG to AAG, resulting in an amino acid change from arginine (R) to 

lysine (K) 3. This polymorphism was associated with a relative resistance to glucocorticoids 11. 

We also showed in a population-based study in the elderly that carriers of this ER22/23EK 

polymorphism had a better insulin sensitivity and lower total and low-density lipoprotein 

cholesterol levels 11. In addition, we found the frequency of the 22/23EK allele to be higher in 

the elder half of the studied population, which suggests a survival advantage. In order to 

investigate whether the ER22/23EK variant is indeed associated with survival we studied a 

separate population of 402 elderly Dutch men 12. After a follow-up of 4 years we found that 

19.2 % of the non-carriers had died, while none of the ER22/23EK-carriers (n=21) had died, 

which was a statistically significant difference. In this same population we also found 

ER22/23EK-carriers to have lower C-reactive protein (CRP) levels, which in turn were also 

associated with a better survival. These lower CRP levels in ER22/23EK-carriers possibly reflect 

a beneficial cardiovascular status 12. 

A well-known effect of glucocorticoids is to negatively influence body composition, 

including redistribution of body fat with deposition of adipose tissue on the abdomen and trunk, 

and muscle atrophy 13.  It is known that body composition plays an important role in lipid 

metabolism and insulin sensitivity, and as a consequence influences the risk on cardiovascular 

disease 14. At present, it is not known what the effects of this ER22/23EK polymorphism are at 

a young age or whether there are any effects on body composition. 

Therefore, in the present study we investigated a cohort of 350 subjects who were 

followed from 13 until 36 years, and studied whether there is an association between the 
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ER22/23EK polymorphism of the GR gene and body composition during puberty and at young 

adult age. 

 

Subjects and Methods 

 

Subjects 350 healthy participants were drawn from the Amsterdam Growth and Health 

Longitudinal Study (AGAHLS), a population-based observational study with repeated 

measurements at the age of 13, 14, 15, 16, 27, 29, 32 and 36 years 15. Subjects of non-

Caucasian race were excluded from the analyses (5 males and 5 females, all noncarriers of the 

ER22/23EK polymorphism). On a total of 337 (158 males) we had complete data on GR 

genotype and adult anthropometry. Data were not complete at all measurements in puberty: a 

total of 332 subjects (26 ER22/23EK-carriers) participated at age 13, 290 (22 ER22/23EK-

carriers) at age 14, 286 (21 ER22/23EK-carriers) at age 15, and 287 (19 ER22/23EK-carriers) at 

age 16 years. All subjects gave their written informed consent to participate in the study, which 

received the approval of the Medical Ethical Committee of the “Vrije Universiteit” of 

Amsterdam. 

Anthropometric Measurements  Body weight (kg) was measured to the nearest 0.1 kg using a 

spring balance scale (Van Vucht, the Netherlands), with subjects dressed only in underwear. 

Standing height was measured with a stadiometer to the nearest 0.001m. Body mass index 

(BMI) was calculated as body weight divided by body height squared. To assess fat distribution 

(abdominal versus gluteo-femoral), we measured waist (at the umbilicus) and hip 

circumference with a flexible steel tape to the nearest 1 mm and the waist-to-hip ratio (WHR) 

was calculated. Fat mass (FM) was estimated from four skinfold thickness measurements 

(biceps, triceps, subscapular and supra iliacal) by the equation of Durnin et al 16, 17, 18. Lean 

body mass was measured by dual X-ray absorptiometry (DEXA), with the Hologic QDR-2000 

(S/N 2513; Hologic, Inc., Waltham, MA, USA). Calf and thigh circumferences were measured 

with a steel tape to the nearest 0.1 cm. 

Muscle strength was assessed by two physical fitness tests from the MOPER fitness test battery 
19 20. The first was the static arm pull test: the subjects were given two attempts to pull 

maximally with their arm of preference, the strength of which was measured (in kg) with a 

dynamometer (Bettendorf, Belgium), fixed to the wall at a horizontal level. The higher score of 

the two was recorded. The second test was the standing high jump. The subjects had two 

attempts to jump as high as possible (higher value recorded) from a platform, having been 

allowed only to bend their knees before jumping. The height they jumped (in cm) was 

measured by a tape, which was fixed to a belt around the subjects’ waist to the platform on the 

ground. 

Physical activity A structured interview based on a physical activity questionnaire (PAQ) was 

used to investigate the amount of physical activity. The questionnaire comprises questions 
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about duration, frequency and metabolic (MET) intensity of all physical activities during the last 

three months preceding the interview. From this information a total weighted activity score 

(METs/week) was calculated 21 22.  

Genetic analysis Restriction fragment length polymorphism analysis was carried out to 

determine GR genotypes. DNA was extracted from peripheral blood leukocytes by standard 

techniques. PCR amplification of the GR gene was carried out employing primer sequences and 

amplification conditions as described previously 3. The PCR-products were digested with 1 U 

Mnl I (New England Biolabs, Inc) at 37 ºC for 1 hour. Mnl I cleaves at 5'-CCTC(N)7-'3 and at 3'-

GGAG(N)6-'5. Fragments were visualized with ethidium bromide on a 3% agarose -gel 

(Boehringer, Mannheim). We re-analysed all heterozygous and 10 wild type samples and found 

identical genotypes. 

Statistical analysis Data were analyzed by SPSS for Windows, release 10.1 (SPSS, Chicago, IL). 

Differences in means between the ER22/23EK-carriers and the noncarriers were adjusted for 

height if appropriate and tested by ANCOVA using the general linear model procedure. High 

jump scores were corrected for body weight. Results are reported as mean ± SE. P values are 

two-sided throughout, and p≤ 0.05 was considered to indicate a significant difference. 

 

 

Results 

 

Anthropometric parameters at young adult age  
In the group of 337 participants we identified 27 (8 %) carriers of the ER22/23EK 

polymorphism (16 males and 11 females). Table 1 shows anthropometric parameters 

determined in noncarriers and carriers of the ER22/23EK polymorphism at the last 

measurement (at the age of 36 years). In males, we found a greater body height in 

ER22/23EK-carriers (p=0.05), as well as a higher body weight (p=0.03). However, the latter 

was not significant after adjustment for height (p=0.14).  BMI was not different between the 

genotypes. Total lean mass was significantly higher in ER22/23EK-carriers compared with 

noncarriers (respectively 66.2 ± 1.5 and 61.4 ± 0.5 kg, p=0.006, after additional correction for 

height p=0.02). The circumference of the thigh was also greater in ER22/23EK-carriers 

(ER22/23EK: 60.4 ± 1.1 and noncarriers: 57.4 ± 0.4 cm, p=0.03), while no differences were 

found in total fat mass or percentage fat.  

 Table 1 also shows anthropometric parameters in female noncarriers and ER22/23EK-

carriers at the age of 36 years. In females, body weight tended to be lower in ER22/23EK-

carriers (63.2 ± 1.8 and noncarriers: 68.5 ± 0.8 kg), although this was not statistically 

significant after adjustment for height (p=0.13). BMI was also not significantly different 

between the two genotypes (ER22/23EK: 22.0 ± 0.8 and noncarriers: 23.5 ± 0.3, p=0.18). 

Waist and hip circumferences tended both to be lower in female ER22/23EK-carriers compared  
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Figure 1: Height (A) and Fat free mass (B) in male noncarriers (white bars) and carriers of the 

ER22/23EK polymorphism (black bars) during puberty (age of 13, 14, 15, and 16 years) and 

adult age (32 and 36 years). ** p≤ 0.05, * p< 0.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Arm pull strength (A) and standing high jump (B) in male noncarriers (white bars) 

and carriers of the ER22/23EK polymorphism (black bars) during puberty (age of 13, 14, 15, 

and 16 years) and adult age (32 and 36 years). High jump scores were corrected for body 

weight. ** p≤ 0.05, * p< 0.10 
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to noncarriers (p=0.07 and p=0.09, respectively, table 1). No differences were found in height, 

fat mass and lean body mass, or circumferences of the thigh, calf and upper arm.  At the age 

of 32 years we found similar results (not shown in table). Male ER22/23EK-carriers had a 

greater body height (p=0.035, figure 1A), higher lean body mass (p=0.02, figure 1B), and 

higher weight (p=0.006, after adjustment for height (p=0.08)), while total fat mass was not 

different (p=0.12). In females, we found a tendency towards a smaller waist circumference in 

female ER22/23EK-carriers (ER22/23EK: 67.5 ± 1.4 and noncarriers: 71.1 ± 0.5, p=0.08). No 

differences in hip circumference (ER22/23EK: 87.2 ± 2.1 and noncarriers: 90.1 ± 0.7, p=0.27) 

or in height, weight, BMI, body composition and muscle strength were observed at the age of 

32.  

 

Anthropometric parameters in puberty 
During puberty we also measured anthropometric variables, body composition and muscle 

strength in the same subjects. Figure 1A shows the height of male noncarriers and carriers of 

the ER22/23EK polymorphism during puberty. Although the pattern of greater height in male 

ER22/23EK-carriers is similar to that at adult age, these differences were not statistically 

significant. The same applied to the amount of lean mass in males: no significant differences 

during puberty between genotypes, although a similar pattern as at adult age (higher lean 

mass in male ER22/23EK-carriers) could be observed (Figure 1B).  

At the age of 15, we found tendencies towards higher body weight (p=0.10), BMI (p=0.06), 

and lean mass (0.09) in ER22/23EK-carriers. On average, male noncarriers grew an additional 

5.9 cm after the age of 16, while ER22/23EK-carriers grew 7.8 cm till they reached their final 

height, however this was not a significant difference. In males, no differences were found in 

other anthropometric parameters or body composition variables during this period. In females, 

no differences were observed in the measured parameters at these four measurements during 

puberty.  

 

 
Muscle strength at adult age and during puberty 
Male ER22/23EK-carriers tended to perform better in the test of arm pull strength (p=0.06 

figure 2A), as well as in high jump from standing (adjusted for body weight, p=0.04, figure 2B) 

at the age of 36 years (see also table 1). Arm pull strength was significantly greater in males at 

the age of 32 (figure 2A, ER22/23EK: 81.2 ± 3.3 and noncarriers: 73.0 ± 1.1, p=0.02). During 

puberty, we found the same tendencies towards better arm strength in male ER22/23EK-

carriers (figure 2A). Performance on high jump from standing was not significantly different 

between the genotypes in males at the age of 32 or during puberty (figure 2B). In females, we 

did not observe any differences in muscle strength of the arm or leg at the age of 36 or 32 

years nor during puberty. 
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Physical activity 
At both measurements at young adult age metabolic equivalent (MET)- scores were determined 

to evaluate physical activity in daily life of the participants. No differences in MET scores 

between the genotypes were observed in both sexes at age 36 (males: p=0.60, 

females:p=0.49, table 1) and 32 years (males: ER22/23EK; 2755 ± 279, noncarriers; 3236 ± 

255 mets/week, p=0.52, and in females: ER22/23EK; 3687 ± 795, noncarriers; 3547 ± 202 

mets/week, p=0.85). 

 

 

Discussion 

 

In this population-based cohort study in young subjects we identified 8% heterozygous carriers 

of the ER22/23EK polymorphism. In males at young adult age, we found ER22/23EK-carriers to 

be on average 4 cm taller than noncarriers and to have significantly more lean body mass, 

while there were no differences in fat mass. In addition, male ER22/23EK-carriers had greater 

thigh circumferences, indicating more muscle mass. Functional muscle strength tests showed a 

better performance of ER22/23EK-carriers in arm strength, with the greatest difference at the 

age of 32, as well as a better performance in tests concerning strength of the legs. MET-scores 

did not differ between genotypes, so differences in physical activity did not underlie the greater 

amount of muscle mass in male ER22/23EK-carriers. 

 These differences in body composition in males were not yet clearly present during 

puberty. However, a tendency could be observed towards greater arm strength in male 

ER22/23EK-carriers during this period, which suggests that the differences already might have 

existed in puberty. The lack of statistical significance of the other body compositional 

parameters could possibly be due to the lower numbers of subjects who participated at 

pubertal age. These incomplete data during puberty might also explain a minor part of the 

difference in mean height between the age of 16 and age 32 yrs. However, most of this 

difference in height is explained by natural growth. In The Netherlands boys grow an additional 

5.5 cm after the age of 16. Interestingly, male ER22/23EK-carriers grew on average almost 2 

cm more than noncarriers after the age of 16. This increased growth suggests that puberty in 

ER22/23EK-carriers might be extended compared to non-carriers. It is known that 

glucocorticoids inhibit growth during puberty. Since we found the ER22/23EK polymorphism to 

be associated with relative glucocorticoid resistance, we would expect less inhibition of growth 

and thus a greater height. This is in accordance with our finding of a greater height in male 

carriers of the ER22/23EK polymorphism. Taken together, it remains unclear at what 

developmental stage exactly these differences between the genotypes that we observed in 

young adults in height, lean mass and thigh circumference arise. Although the mean heights in 

this population-based study appear rather tall, these heights are in accordance with the mean 
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height at these ages in The Netherlands. This suggests that our findings are very well 

applicable to the Dutch population as a whole. 

 In young adult females, we found in ER22/23EK-carriers tendencies towards smaller 

waist and hip circumferences and lower body weight, suggesting a lower amount of 

subcutaneous fat. These differences could not be detected during puberty. No statistically 

significant differences were found in measures of body composition or muscle strength 

between the genotypes.  

Longterm exposure to high levels of glucocorticoids are known to negatively influence muscle 

mass and growth 23, 24. Thus, the findings of greater height and more muscle mass in male 

ER22/23EK-carriers could be explained by the observation that ER22/23EK-carriers are 

relatively resistant to the effects of glucocorticoids, as we recently demonstrated 11. Another 

well-known chronic effect of glucocorticoids is redistribution of fat mass to the abdominal 

region. In line with a glucocorticoid insensitive effect of the ER22/23EK polymorphism we found 

at the age of 32, as well as at 36 years a tendency towards smaller waist circumference in 

female ER22/23EK-carriers.  

The associations between the ER22/23EK polymorphism and body composition appear to be 

different between sexes. However, there could be subtle anabolic effects in female ER22/23EK-

carriers as well, in line with a relative cortisol resistance and as a result possibly higher 

androgen levels. When we consider the mean weight difference (more than 5 kg) between 

female noncarriers and carriers of the ER22/23EK polymorphism, the difference in lean body 

mass is quite small (less than 2 kg), which indicates that female ER22/23EK-carriers also have 

relatively more lean body mass. However, the number of female carriers of the polymorphism 

is relatively small, which might explain that we found no statistically significant differences. 

Besides more muscle mass, we would also expect less fat mass in subjects with slightly higher 

androgen levels. In females, we observed tendencies towards smaller waist and hip 

circumferences, which might reflect a lesser amount of subcutaneous fat mass. 

 On the other hand, the ER22/23EK polymorphism could have sex-specific effects on 

body composition. We speculate that differential effects of sex steroid hormones and/ or 

growth hormone could play a role. It is known, that in rodents the hypothalamic-pituitary-

adrenal (HPA) axis is differently regulated in males and in females, both in basal conditions and 

in response to psychological or physical stress conditions 25. In this context, androgens inhibit 

and estrogens enhance the HPA responsiveness to stress 26 27. In addition, in a relative 

glucocorticoid resistant condition, as is the case in carriership of the ER22/23EK variant allele, 

ACTH production is expected to be slightly higher than in noncarriers due to the lower negative 

feedback inhibition at the pituitary level. As a consequence, ER22/23EK-carriers might have 

slightly higher circulating androgen concentrations, which could also, besides a smaller direct 

(negative) effect of glucocorticoids, contribute to the observed beneficial body composition. 

The differential effects of sex steroid hormones might explain the gender dimorphism in the 
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associations we observed between genotype and body composition. However, in the present 

study we did not measure any serum hormone concentrations. 

 The exact mechanism of this polymorphism at the molecular level is unknown. The 

amino acid change in codon 23 (arginine to lysine) might affect the tertiary structure of the 

receptor. Since the ER22/23EK variant is located near the transactivation domain, this could 

influence the transactivational and/or transrepressional activity on target genes 28, 29. Recently, 

it has been shown that two different GR isoforms (A and B) exist, due to two different 

methionine (M) codons in the GR mRNA, which both can be used as initation codon (M1 and 

M27). The GR-B protein has a stronger transactivating effect in transient transfection 

experiments, but no difference in transrepression 30. The secondary structure of the GR mRNA 

might be affected by the ER22/23EK polymorphism, which could result in a different usage of 

the initiation codons. A change in GR-A/GR-B ratio could then explain the decreased sensitivity 

to glucocorticoids 29. Indeed, secondary structure prediction (M-fold) showed different 

structures for the wildtype and the polymorphic mRNA 29. A third possibility is that the 

ER22/23EK polymorphism might lead to differences in binding of proteins, which could affect 

mRNA stability and thereby influence glucocorticoid sensitivity. 

 In summary, we found that the ER22/23EK polymorphism of the GR gene is 

associated with greater body height and more muscle mass and strength in young adult males. 

In females, we found a tendency towards smaller waist circumference, and to a lesser extent 

smaller hip circumference. Thus, we conclude that the ER22/23EK polymorphism is associated 

with a sex-specific, beneficial body composition at young adult age, as well as more muscle 

strength in males.  

  

References  

1. Baxter JD, Rousseau GG. Glucocorticoid hormone action: an overview. Monographs on 

Endocrinology 1979;12:1-24. 

2. DeRijk RH, Schaaf M, de Kloet ER. Glucocorticoid receptor variants: clinical implications. J 

Steroid Biochem Mol Biol 2002;81(2):103-22. 

3. Koper JW, Stolk RP, de Lange P, et al. Lack of association between five polymorphisms in 

the human glucocorticoid receptor gene and glucocorticoid resistance. Human Genetics 

1997;99(5):663-668. 

4. Huizenga NA, Koper JW, De Lange P, et al. A polymorphism in the glucocorticoid receptor 

gene may be associated with an increased sensitivity to glucocorticoids in vivo. Journal of 

Clinical Endocrinology and Metabolism 1998;83(1):144-151. 

5. Dobson MG, Redfern CP, Unwin N, Weaver JU. The N363S polymorphism of the 

glucocorticoid receptor: potential contribution to central obesity in men and lack of 

association with other risk factors for coronary heart disease and diabetes mellitus. J Clin 

Endocrinol Metab 2001;86(5):2270-4. 



ER22/23EK polymorphism is associated with beneficial body composition   
 

 
109 

6. Lin RC, Wang WY, Morris BJ. High penetrance, overweight, and glucocorticoid receptor 

variant: case-control study. British Medical Journal 1999;319(7221):1337-1338. 

7. Echwald SM, Sorensen TI, Andersen T, Pedersen O. The Asn363Ser variant of the 

glucocorticoid receptor gene is not associated with obesity or weight gain in Danish men. 

Int J Obes Relat Metab Disord 2001;25(10):1563-5. 

8. Rosmond R, Bouchard C, Bjorntorp P. Tsp509I polymorphism in exon 2 of the 

glucocorticoid receptor gene in relation to obesity and cortisol secretion: cohort study. Bmj 

2001;322(7287):652-3. 

9. Panarelli M, Holloway CD, Fraser R, et al. Glucocorticoid receptor polymorphism, skin 

vasoconstriction, and other metabolic intermediate phenotypes in normal human subjects. 

Journal of Clinical Endocrinology and Metabolism 1998;83(6):1846-1852. 

10. Rosmond R, Chagnon YC, Holm G, et al. A glucocorticoid receptor gene marker is 

associated with abdominal obesity, leptin, and dysregulation of the hypothalamic-pituitary-

adrenal axis. Obesity Research 2000;8(3):211-218. 

11. van Rossum EF, Koper JW, Huizenga NA, et al. A polymorphism in the glucocorticoid 

receptor gene, which decreases sensitivity to glucocorticoids in vivo, is associated with low 

insulin and cholesterol levels. Diabetes 2002;51(10):3128-3134. 

12. van Rossum EF, Feelders RA, van den Beld AW, et al. The ER22/23EK Polymorphism in the 

Glucocorticoid Receptor Gene is Associated with Better Survival and Low C-Reactive Protein 

Levels in Elderly Men. American Journal of Medicine, in press 2004. 

13. Rudman D, Girolamo MD. Effects of adrenal cortical steroids on lipid metabolism. In: 

Christy NP E, ed. The human adrenal cortex. New York: Harper & Row, 1971;241-255. 

14. Vague J. The degree of masculine differentiation of obesities: a factor determining 

predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr 

1956;4(1):20-34. 

15. Kemper HCG, van Mechelen W, Post GB, et al. The Amsterdam Growth and Health 

Longitudinal Study. The past (1976-1996) and future (1997-?). Int J Sports Med 1997;18 

Suppl 3:S140-50. 

16. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from 

skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J 

Nutr 1974;32(1):77-97. 

17. Durnin JV, Rahaman MM. The assessment of the amount of fat in the human body from 

measurements of skinfold thickness. Br J Nutr 1967;21(3):681-9. 

18. Weiner J, Lourie J. Human Biology, a guide to field methods IBP Handbook no 9. Oxford: 

Blackwell, 1968. 

19. Kemper HCG. The Amsterdam growth study: a longitudinal analysis of health, fitness and 

lifestyle. Champaign (IL): Human Kinetics. HK Sport Science Monograph Series 1995;6. 



Chapter 6 
 

  110 

20. Kemper HCG, Verschuur R, Boven'eerdt JHF. The MOPER Fitness Test. S. Afr. J. Resp. 

Sport Phys. Educ. Recreat. 1979;2:81-93. 

21. Andersen KL, Rutenfranz J, Masironi R. Habitual Physical Activity and Health. Washington 

DC: World Helath Organisation, 1978. 

22. Montoye HJ, Kemper HCG, Saris WHM, Washburn RA. Measuring physical activity and 

energy expenditure. Vol app. Champaign, IL: Human Kinetics, 1996. 

23. Hasselgren PO. Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care 

1999;2(3):201-5. 

24. Hughes IA. Steroids and growth. Br Med J (Clin Res Ed) 1987;295(6600):683-4. 

25. Le Mevel JC, Abitbol S, Beraud G, Maniey J. Dynamic changes in plasma 

adrenocorticotrophin after neurotropic stress in male and female rats. J Endocrinol 

1978;76(2):359-60. 

26. Viau V, Meaney MJ. The inhibitory effect of testosterone on hypothalamic-pituitary-adrenal 

responses to stress is mediated by the medial preoptic area. J Neurosci 1996;16(5):1866-

76. 

27. Viau V, Meaney MJ. Variations in the hypothalamic-pituitary-adrenal response to stress 

during the estrous cycle in the rat. Endocrinology 1991;129(5):2503-11. 

28. de Lange P, Koper JW, Huizenga NA, et al. Differential hormone-dependent transcriptional 

activation and -repression by naturally occurring human glucocorticoid receptor variants. 

Mol Endocrinol 1997;11(8):1156-64. 

29. Russcher H, Lamberts SWJ, van Rossum EFC, Brinkmann AO, de Jong FH, Koper JW. 

Impaired translation of glucocorticoid receptor mRNA as a result of the ER22/23EK 

polymorphism. Annual Meeting of the Endocrine Society. Philadelphia, PA, 2003. 

30. Yudt MR, Cidlowski JA. Molecular identification and characterization of a and b forms of the 

glucocorticoid receptor. Mol Endocrinol 2001;15(7):1093-103. 

 



 

 

 

 

 

 

Association of the ER22/23EK polymorphism in 
the glucocorticoid receptor gene with survival 

and C-reactive protein levels in elderly men  

Elisabeth F. C. van Rossum, Richard A. Feelders, Annewieke W. van den Beld, André G. 
Uitterlinden, Joop A. M. J. L. Janssen, Wietske Ester, Albert O. Brinkmann, Diederick E. 
Grobbee, Frank H. de Jong, Huibert A. P. Pols, Jan W. Koper, Steven W. J. Lamberts 

American Journal of Medicine 2004 Aug 1;117(3):158-62 

7�



 

 

 
 

 



Association of the ER22/23EK polymorphism with survival and CRP 
 

 
113 

Abstract 

 

Purpose: we recently demonstrated that a polymorphism in codons 22 and 23 of the 

glucocorticoid receptor gene is associated with relative glucocorticoid resistance, greater insulin 

sensitivity, and lower total and low-density lipoprotein cholesterol levels. In the present study, 

we investigated whether the ER22/23EK polymorphism is associated with survival, cholesterol 

levels, and two predictors of mortality: serum C-reactive protein (CRP) and interleukin 6 (IL-6) 

levels. Methods:  we studied 402 men (mean (± SD) age, 77.8 ± 3.6 years). CRP was 

measured by a highly sensitive method using a latex-enhanced immunonephelometric assay. 

IL-6 was determined by a commercially available immulite assay. Results: after a follow-up of 4 

years, 73 (19%) of 381 noncarriers died, while none of the 21 ER22/23EK carriers had died (P 

= 0.03). CRP levels were about 50% lower in ER22/23EK carriers (P = 0.01). There were no 

differences in IL-6 levels. Conclusion: carriers of the ER22/23EK polymorphism have better 

survival than noncarriers, as well as lower CRP levels. 
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Introduction 

 

Most of the effects of glucocorticoids are mediated by the glucocorticoid receptor 1. Recently, 

we demonstrated that a polymorphism in codons 22 and 23 of the glucocorticoid receptor gene 

(GAGAGG (GluArg, or ER) → GAAAAG (GluLys, or EK)) is associated with relative glucocorticoid 

resistance 2. This ER22/23EK variant was also associated with greater insulin sensitivity and 

lower total and low-density lipoprotein (LDL) cholesterol levels. Furthermore, we found that the 

number of ER22/23EK carriers was significantly higher in the older half of the sample, 

suggesting that the polymorphism had a beneficial effect on survival.  

The ER22/23EK variant might also affect the inflammatory response, and elevated 

levels of two inflammatory markers — CRP and IL-6 — are associated with mortality in the 

elderly 3. CRP is an independent risk factor for cardiovascular events 4-7. IL-6  stimulates the 

synthesis of CRP, as well as other acute phase proteins in the liver, and is elevated in patients 

with unstable angina or heart failure 8-11. Therefore, we investigated whether CRP and IL-6  

levels, as well as survival, were associated with the ER22/23EK polymorphism of the 

glucocorticoid receptor gene. 

 

Methods 
 
Subjects   

We recruited 402 men, aged 73 years or older, by a letter that was sent to the oldest men in 

Zoetermeer, The Netherlands. Subjects were eligible to participate if they were physically and 

mentally able to visit the study center independently. No additional health-related criteria were 

used. Medications taken for more than 6 months were recorded. Data on vital status of the 

participants and causes of death during 4-year follow-up were obtained by contacting the 

participants’ general practitioners. Before the start of the study, which received the approval of 

the Medical Ethics Committee of the Erasmus Medical Center, all subjects had given their 

written informed consent to participate. 

 

Measurements   

Weight and height were measured, and the body mass index (kg/m2) was calculated. Blood 

pressure was measured in sitting position at the right upper arm with a random-zero 

sphygmomanometer. Total fat mass, trunk fat mass, and lean body mass were measured using 

dual-energy X-ray absorptiometry (Lunar Corp., Madison, Wisconsin) 12. Quality assurance, 

including calibration, was performed every morning, using the standard provided by the 

manufacturer. Levels of total and high-density lipoprotein (HDL) cholesterol and triglycerides 

were measured using standard laboratory methods; LDL cholesterol levels were calculated. CRP 

was measured with a highly sensitive method using a latex-enhanced immunonephelometric 
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assay on a BN II analyser (Dade Behring, Liederbach, Germany). IL-6  was determined by a 

commercially available immulite assay (Diagnostic Products Corporation, Los Angeles, 

California), using aliquots of undiluted sera tested against an absolute IL-6  standard 

preparation. Based on these standard curves, the concentrations of IL-6  were calculated by 

the software provided. Cortisol was measured using a radioimmunoassay (Diagnostic System 

Laboratories, Webster, Texas). Lower extremity function or physical performance was assessed 

with measurements of standing balance, walking speed, and ability to rise from a chair 13. A 

summary performance scale, which ranged from 0 (worst) to 12 (best), was created by 

summing these scores. Satisfaction in performing activities of daily living was assessed by using 

a self-administered questionnaire 14. All items are evaluated on a 4-point scale; higher scores 

denote greater impairment. At baseline, a 21-item medical history was obtained by a structured 

questionnaire, according to the following groups: musculoskeletal impairments (including 

arthritis and fractures); cardiovascular impairments (including symptoms or treatment of angina 

pectoris, heart failure, hypertension, arrythmia, myocardial infarction, cerebrovascular accident, 

and shortness of breath); prostate problems (hyperplasia and cancer); other malignancies; 

endocrine disorders (diabetes mellitus and thyroid disease); and other conditions (dizziness and 

disturbed vision that impair mobility). A physical examination was performed. None of the 

participants was being treated for systemic infectious, inflammatory, or malignant disorders at 

the time of enrollment. Glucocorticoid receptor genotypes were determined by restriction 

fragment length polymorphism analysis 15. For confirmation, we reanalyzed all 21 heterozygous 

samples and 10 wild-type samples, and found identical genotypes. 

 

Statistical Analysis  

Data were analyzed using SPSS for Windows, release 10.1 (SPSS, Chicago, Illinois). Differences 

between the ER22/23EK carriers and the noncarriers were adjusted for age and, if necessary, 

for body mass index or smoking and tested by analysis of covariance using the general linear 

model procedure. Bonferroni post hoc tests were used to adjust for multiple comparisons. If 

dependent variables were not normally distributed, logarithmic transformations were applied to 

normalize them or nonparametric tests (Mann-Whitney U test) were used. Continuous variables 

are reported as mean ± SD or median with the interquartile range. Survival was analyzed using 

the Kaplan-Meier procedure and log-rank test. To study the association between CRP levels and 

mortality, CRP levels were divided in two groups (high vs. low, based on the median value). 

Cox proportional hazards models were used to analyze this relation, adjusting for genotype, 

diabetes, and health status. Correlations between CRP levels and parameters of body 

composition and cortisol levels were calculated using Spearman’s correlation. P <0.05 was 

considered statistically significant. 
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Results 

 

Of the 402 men, 21 (5%) were heterozygous for the ER22/23EK polymorphism. No 

homozygotes were found. There were no significant differences in age, smoking status, 

measures of body composition, or lipids between the carriers and noncarriers (Table 1).  

 

Mortality 
Of the 381 noncarriers, 73 (19%) died during the 4 years of follow-up, while none of the 21 

ER22/23EK carriers had died (Figure 1, P = 0.03). Causes of mortality included cardiovascular 

disease (40%, n = 29), cancer (11%, n = 8), pneumonia (7%, n = 5), cerebrovascular 

accident (5%, n = 4), miscellaneous (cachexia, infections, pulmonary emphysema: 7%, n = 5), 

and unknown (30%, n = 22). Men with lower CRP levels (less than the median) had 

significantly better survival (13% (27/201) died) than those with higher CRP levels (24% 

(47/201) died; hazard ratio = 1.8; 95% confidence interval: 1.1 to 2.9). Additional analyses 

that adjusted for genotype, diabetes, or general health status (as physical performance, 

activities of daily life scores, and morbidity data) did not change these results. 

 
Anthropometric, Metabolic, and Inflammatory Parameters in ER22/23EK Carriers 
and Noncarriers 
ER22/23EK carriers had significantly lower CRP levels than noncarriers (Table 1). Lean body 

mass tended to be higher in ER22/23Ek-cariers  compared to noncarriers; however, this did not 

reach statistical significance after correction for height. CRP levels correlated significantly with 

body mass index (r = 0.16, P = 0.002), total fat mass (r = 0.15, P = 0.003), and trunk fat 

mass (r = 0.16, P = 0.001), but not with lean body mass (r = 0.02, P = 0.63). Early morning 

cortisol levels did not correlate with CRP levels (r = 0.04, P = 0.48) or genotype (P = 0.81). We 

found no differences in body mass index, blood pressure, or levels of HDL cholesterol, 

triglycerides, or IL-6  between ER22/23EK carriers and noncarriers (Table 1).  
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Figure 1:  Kaplan-Meier 
survival curves by 
glucocorticoid receptor 
genotype. ER22/23EK 
carriers had significantly 
better survival than 
noncarriers. The solid line 
denotes noncarriers; the 
dotted line denotes 
ER22/23EK carriers. 
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Table 1: Baseline Characteristics of Noncarriers and Carriers of the ER22/23EK Polymorphism 

among 402 Elderly Men* 
 Noncarriers 

(n = 381) 

ER22/23EK Carriers 

(n = 21) 

 

P 

Characteristic Number (%), Mean ± SD, or Median 

(Interquartile Range) 

 

Age (years) 77.7 ± 3.6 78.3 ± 3.6 0.46 

Smokers  65 (17) 5 (24) 0.43 

Body mass index (kg/m2) 25.6 ± 4.3 25.9 ± 3.1 0.75 

Lean mass (kg) 51.7 ± 5.6 52.8 ± 5.2 0.18† 

Fat mass (kg) 21.1 ± 5.7 21.2 ± 6.6 0.89† 

Trunk fat mass (kg) 10.6 ± 2.6 10.6 ± 2.9 0.98 

Systolic blood pressure (mm Hg) 156 ± 24 158 ± 29 0.67‡ 

Diastolic blood pressure (mm Hg) 84 ± 11 86 ± 13 0.49‡ 

Total cholesterol (mmol/L)§ 5.8 ± 1.1 5.4 ± 1.0 0.14‡ 

LDL cholesterol (mmol/L)§ 3.8 ± 1.0 3.5 ± 0.9 0.22‡ 

HDL cholesterol (mmol/L)§ 1.3 ± 0.4 1.3 ± 0.3 0.36‡ 

Triglycerides (mmol/L)§ 1.4 ± 0.8 1.3 ± 0.7 0.75‡ 

C-reactive protein (mg/L)§ 4.0 ± 9.1 2.0 ± 2.6 0.01 

Interleukin 6 (pg/mL) 19.1 ± 11.1 19.9 ± 9.2 0.47 

Diabetes  30 (8) 3 (14) 0.31 

Activities of daily life (points)  9 (8-12) 9 (8-11) 0.88 

Physical performance (points)  9 (7-10) 9 (7-11) 0.54 

Number of chronic diseases  3 (1-5) 3 (1-5) 0.78 

*All parameters were adjusted for age, and CRP and IL-6 values were logarithmically 

transformed. †Lean mass and fat mass were also adjusted for height. ‡Blood pressures and 

lipids were adjusted for BMI. §To convert total, HDL, and LDL cholesterol levels from mmol/L to 

mg/dL, multiply by 38.67; for triglyceride levels, multiply by 89.15. To convert CRP levels from 

mg/L to mg/dL, divide by 10. HDL = high-density lipoprotein; LDL = low-density lipoprotein. 
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Discussion 

 

In this population-based study involving elderly men, we found that carriers of the ER22/23EK 

polymorphism of the glucorticoid receptor gene had better 4-year survival. This is in line with 

our previous findings 2, in which we observed that the proportion of ER22/23EK carriers was 

significantly greater in the older half of the study sample. The ER22/23EK carriers also had 

significantly lower CRP levels, but no association was found with anthropometric parameters or 

IL-6  levels. Since CRP level predicts total and cardiovascular mortality in the elderly 16, it might 

underlie the effect of the ER22/23EK polymorphism on survival. However, it is unclear whether 

CRP is a cause of atherosclerosis or whether it reflects the degree of vascular damage 17. We 

previously demonstrated that carriers of the ER22/23EK polymorphism are relatively resistant 

to the effects of glucocorticoids, and have lower fasting insulin and cholesterol levels 2. Perhaps 

the lower CRP levels we observed in ER22/23EK carriers are related to, and possibly even due 

to, having less atherosclerosis.   

 Greater body mass index, and fat mass in particular, are related to higher levels of 

IL-6  and CRP 18-22. We found that CRP level correlated positively with body mass index and fat 

mass in these elderly men, but there was no association between IL-6  and these parameters. 

We did not observe differences in BMI or fatmas by genotype. ER22/23EK-carriers had a 

slightly (but not significantly) higher lean body mass. We hypothesized that a greater lean body 

mass, which might also result in greater insulin sensitivity, may also be a factor in the better 

cardiovascular health status of ER22/23EK-carriers, thereby contributing to lower CRP levels. In 

another study, we found associations of the ER22/23EK polymorphism with body composition 

in young adults, specifically in male carriers aged 36 with a average of 5 kg more lean mass 

and in female carriers with tendencies towards less fatmass. Muscle mass is an important 

determinant of insulin sensitivity and can thus contribute to a better metabolic profile. We 

believe that body composition could play an important role in the relation of the ER22/23EK 

polymorphism with both survival and CRP levels. 

IL-6  is a potent stimulator of CRP in the liver and acts synergistically with 

glucocorticoids to induce the synthesis of other acute phase proteins by the liver. In addition, 

glucocorticoids inhibit the production of IL-6  when administered in pharmacological amounts 

or when present at high levels 23,24. However, in physiological circumstances, the stimulatory 

effect of glucocorticoids on IL-6  is minor or even absent 23. The variation in basal cortisol levels 

in carriers and noncarriers of the ER22/23EK polymorphism is likely to be within the 

physiological range because cortisol levels did not differ significantly by genotype. However, in 

general, the biological response of a target cell to a hormone is determined by several factors, 

including the concentration of the hormone, the concentration of receptors, and the affinity of 

the hormone-receptor interaction. For example, glucocorticoids also upregulate the IL-6  

receptor 25, by which they can influence the biological effects of IL-6 . The ER22/23EK 
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polymorphism, which is associated with relative resistance to the effects of glucocorticoids, 

might result in a lesser degree of upregulation of the IL-6  receptor. Thus, although there were 

no differences in circulating IL-6  concentrations, the ER22/23EK polymorphism might result in 

a decreased stimulation of CRP production. In addition, CRP can be synthesized by adipocytes 

without mediation of IL-6 26.  

Thus, the association between ER22/23EK polymorphism and mortality might be due 

to factors other than CRP. We reported an association between the ER22/23EK polymorphism 

and greater insulin sensitivity, as well as lower total and LDL cholesterol levels in a population-

based sample that had a mean age of 67 years. Although we observed a similar pattern in the 

present study, we did not find statistically significant differences in cholesterol levels, perhaps 

because the mean age in the current study was more than 10 years older; selection of 

surviving participants with relatively low cholesterol levels may have occurred.  

In this study, and in our previous study 2, there was no correlation between 

ER22/23EK polymorphism and early morning cortisol levels. However, we previously reported 

that the carrier genotype is associated with glucocorticoid resistance, as manifest by a 

decreased response to the dexamethasone suppression test 2. These data suggest that there 

may be beneficial metabolic effects, resulting in better survival, due to subtle lifelong 

glucocorticoid resistance. In the present study, we found that the ER22/23EK polymorphism of 

the glucocorticoid receptor gene was associated with lower CRP levels and better survival in 

elderly men. 
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Abstract 

 

Context:  Glucocorticoids are essential for proper brain functioning. Increased levels of cortisol, 

related to stress and possibly also to aging, have been associated with cognitive impairment 

and dementia. The effects of glucocorticoids are mediated by the glucocorticoid receptor (GR).  

A functional polymorphism (ER22/23EK) of the GR gene (NR3C1) is associated with relative 

glucocorticoid resistance and a healthy metabolic profile.  Objective: We investigated whether 

the ER22/23EK polymorphism is associated with dementia and structural brain abnormalities.  

Design and Setting: 6034 elderly from the Rotterdam Study were screened for dementia during 

a mean follow-up of 5.8 years. In addition, in 1011 elderly of the Rotterdam Scan Study we 

investigated the association of this polymorphism with structural brain abnormalities on MRI.  

Main Outcome Measures: prevalent and incident dementia, cognitive function (memory and 

psychomotor speed) in non-demented participants, cerebral white matter lesions, hippocampal 

and amygdalar volumes. Results: The ER22/23EK polymorphism was negatively associated with 

the risk of developing dementia. Also at baseline dementia was less prevalent in ER22/23EK-

carriers compared to noncarriers (86% risk reduction). In addition, the presence of cerebral 

white matter lesions and brain infarctions, as well as the risk of progression of white matter 

lesions was decreased in ER22/23EK-carriers. No association was found with atrophy of the 

medial temporal lobe on MRI.  Among non-demented participants, ER22/23EK-carriers had a 

better performance on psychomotor speed tests than non-carriers, but  no differences were 

found in memory function between genotypes. Conclusions: Our results suggest a protective 

effect of the ER22/23EK polymorphism on the risk of dementia and cerebral small vessel 

disease. 
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Introduction 

 

Glucocorticoids have a wide variety of effects on peripheral organs, as well as on brain 

physiology. 1 The glucocorticoid receptor (GR) is the major factor in the mediation of the 

effects of cortisol. Sensitivity to glucocorticoids between individuals is highly variable, whereas 

the intra-individual sensitivity is rather stable, suggesting a genetic factor determining 

sensitivity to glucocorticoids. 2 In this context the classical syndrome of glucocorticoid 

resistance as a result of a mutation in the glucocorticoid receptor is an example of how 

important this receptor is in the regulation of the hypothalamo-pituitary-adrenal (HPA) axis. 3,4  

In a study performed in healthy elderly we found that also within the normal 

population some individuals are relatively glucocorticoid resistant as observed by a diminished 

suppression in the dexamethasone suppression test. 5 In a subgroup from the Rotterdam 

Study, a prospective population-based cohort study among elderly, we found several 

polymorphisms of the GR gene.5 One of these polymorphisms consists of two linked single 

nucleotide mutations (GAGAGG GAAAAG) in codons 22 and 23 in exon 2. The first mutation is 

silent, both codons code for glutamic acid (E). The second mutation, results in a change from 

arginine (R) to lysine (K). 5 We found that carriers of this ER22/23EK polymorphism were 

significantly more resistant to the effects of glucocorticoids than noncarriers.6 We found these 

ER22/23EK-carriers to have also a better insulin sensitivity and lower cholesterol levels. 6 In a 

separate population of elderly men we found the ER22/23EK polymorphism to be associated 

with longevity, as well as lower C-reactive protein levels, possibly reflecting a beneficial 

cardiovascular profile. 7 In addition, we observed that ER22/23EK-carriers have a sex-specific 

beneficial body composition at young adult age.8  All these effects can be explained by their 

subtle glucocorticoid insensitivity. Recently, the molecular mechanism by which the ER22/23EK 

polymorphism led to decreased sensitivity to glucocorticoids was elucidated .9 

No data have been reported concerning the role of the ER22/23EK polymorphism in 

relation to cognitive function. HPA-axis overactivity, which is related to stress leads to increased 

levels of cortisol,10 has been associated with cognitive impairment and dementia.11,12 In 

longitudinal studies in both Alzheimer’s disease (AD) patients and healthy elderly, higher 

plasma cortisol levels led to a more rapid decline in cognitive function over time.12-14 

Furthermore, HPA-axis overactivity is related to an increased vascular risk, including 

hypertension and obesity.15,16 Increasing evidence suggests that cerebrovascular pathology is 

important in the etiology and clinical course of dementia and AD.17,18 In this context, white 

matter lesions and brain infarctions on MRI, indicative of small vessel disease, have also been 

associated with cognitive function.19,20   

We hypothesized a protective effect of the ER22/23EK polymorphism with respect to 

risk of dementia. Therefore, we investigated the relationship between this polymorphism and 

the risk of dementia and cognitive performance in the Rotterdam Study. We further studied the 
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relationship between this polymorphism and both cognitive function and structural 

abnormalities of the brain on MRI in the Rotterdam Scan Study. The effects on brain structures 

could be either direct (less harmful cortisol effects due to relative glucocorticoid resistance), or 

indirect (due to a better metabolic status). In order to study direct cortisol effects on the brain, 

we tested memory function and measured hippocampal and amygdalar volumes on MRI, which 

have been shown to be directly affected by increased cortisol levels.21-23 Indirect effects of a 

relative cortisol resistance were studied by psychomotor speed tests, as well as cerebral white 

matter lesions on MRI, which are related to vascular disease.24  

 

Methods 

 

Study Design 

The Rotterdam Study is a population-based, prospective cohort study designed to study the 

frequency and determinants of chronic diseases in the elderly.25 All inhabitants of Ommoord, a 

district of Rotterdam, the Netherlands, aged 55 years and over including those living in 

institutions were invited, of whom 7983 gave their written informed consent and participated in 

the study (response 78%). At baseline, 7,528 subjects were screened for dementia.26 Of these, 

483 were diagnosed to be demented. The cohort at risk of dementia thus comprised 7,045 

subjects. Two follow-up examinations took place in 1993-1994 and 1997-1999. The total cohort 

was further continuously monitored for mortality and major morbidity. Follow-up for dementia 

was virtually complete (99.9%).  

The Rotterdam Scan Study is a prospective cohort study designed to investigate 

determinants and consequences of brain abnormalities on MRI in the elderly.27 Between 1995 

and 1996 participants were randomly selected from the Rotterdam Study and the Zoetermeer 

study, another ongoing prospective cohort study in The Netherlands, after stratification by sex 

and age in 5-year age groups. Elderly with MRI contraindications or dementia at baseline were 

excluded. Complete information including a cerebral MRI scan was obtained in 1077 

participants (response 63%). A total of 951 participants, who were eligible for a second MRI 

examination, were re-invited in 1999 to 2000 of whom 668 participated (response rate 70%). 

Both studies have been approved by the Medical Ethics Committee of Erasmus Medical Center, 

The Netherlands. 

 

Dementia diagnosis 

Case-finding and diagnostic procedures for dementia and AD have been described previously28 

and were equal for both studies. Both at baseline and follow-up examinations, a stepwise 

procedure was used. First, subjects were cognitively screened with the Mini-Mental State 

Examination (MMSE)29 and the Geriatric Mental State (GMS) schedule  organic level.30 Second, 

if subjects scored below 26 on the MMSE or above 0 on the GMS organic level, the Cambridge 
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Examination of Mental Disorders in the Elderly (CAMDEX),31 including an informant interview, 

was administered. Finally, subjects suspected of having dementia were further examined by a 

neurologist, a neuropsychologist and, if possible, had magnetic resonance imaging of the brain. 

In addition, continuous monitoring of the cohort for incident dementia cases took place through 

computerized linkage between the study database and computerized medical records from 

general practitioners and through surveillance of Regional Institute for Outpatient Mental 

Health Care reports.28 Dementia diagnoses were based on DSM-III-R criteria, AD and vascular 

dementia diagnoses were subsequently based on the NINCDS-ADRDA and the NINDS-AIREN 

criteria respectively.32-34 Final diagnoses were made based on all existing information by an 

expert panel including the neurologist, neuropsychologist and research physician. 

 

Neuropsychological testing 

In addition to the MMSE, which was administered in both studies, participants in the Rotterdam 

Scan Study underwent more detailed neuropsychological testing at baseline (1995-1996) 

including an abbreviated Stroop test, the Letter-Digit Substitution task (a modified version of 

the Symbol Digit Modalities Test), a verbal fluency test, a Paper-and-Pencil Memory Scanning 

Task and a 15-word verbal learning test (based on Rey’s recall of words).19 From these tests 

we constructed compound scores for psychomotor speed, memory performance, and global 

cognitive function by transforming individual test scores into standardized Z-scores.19 

 

MRI procedures 

Within the Rotterdam Scan Study, cranial MRI scanning was performed in all participants with 

1.5-Tesla scanners at two study centers (Gyroscan, Philips NT, Best, The Netherlands or 

VISION MR, Siemens, Erlangen, Germany) using standard T1, T2 and proton-density weighted 

MR sequences. MRI acquisition parameters have been described.19 For the 563 participants of 

the Rotterdam Study a custom-made double contrast 3D half-Fourier acquisition single-shot 

turbo spin echo (HASTE) sequence was added for volumetric assessments of the hippocampus 

and amygdala. In 1999 to 2000 all second MRI scans were made with the VISION MR scanner 

using the same sequences. All scan assessments were done by raters blinded to any clinical 

information related to the participants.  

Generalized brain atrophy. Generalized brain atrophy was scored on T1-weighted images. 

Subcortical atrophy was measured by the ventricle-to-brain ratio (average of assessments at 

three locations, range 0.21 to 0.45). Using reference scans cortical atrophy was rated on a 

semiquantitative scale (based on the size of gyri and sulci at five locations: 0 (no cortical 

atrophy) to 3 (severe cortical atrophy). The atrophy score for the sum of all regions  ranged 

from 0 to 15.35 

Hippocampal and amygdalar volumes. Hippocampal and amygdalar volumes were measured on 

coronal slices (1.5 mm, no interslice gap) reconstructed from the HASTE sequence to be 
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perpendicular to the long axis of the hippocampus, as previously described.36 Briefly, the left 

and right hippocampus and amygdala were manually traced on each slice by means of a mouse 

driven pointer and volumes (ml) were calculated by summing the areas multiplied by slice 

thickness. Total hippocampal or amygdalar volume was calculated by summing the left and 

right hippocampal or amygdalar volume.  Midsagittal area (cm2) was measured by tracing the 

inner skull to obtain a proxy for intracranial volume.36 Head size differences across individuals 

were corrected for by dividing the uncorrected volumes by the subject's calculated head size 

area and subsequently multiplying this ratio by the average head size area (men and women 

separately).37  

White matter lesions.  At baseline, white matter lesions were assessed in all participants of the 

Rotterdam Scan Study (n=1077) and were considered present if visible as hyperintense on 

proton density and T2-weighted images, without prominent hypointensity on T1-weighted 

images and scored in periventricular (range 0-9) and subcortical white matter regions 

(approximated volume, range 0 to 29.5 ml) on the proton density scans.19 After 3 years, 668 

participants underwent repeated MRI scanning. Change in periventricular and subcortical white 

matter lesion severity was rated with a semiquantitative scale, and progression was rated as 

no, minor or marked progression.38 

Brain infarctions. We defined brain infarcts as focal hyperintensities on T2-weighted images, 3 

mm in size or larger. Proton-density scans were used to distinguish infarcts from dilated 

perivascular spaces. Hyperintensities in the white matter also had to have corresponding 

prominent hypointensities on T1-weighted images, in order to distinguish them from cerebral 

white matter lesions.20 

 

Genetic analysis 

At baseline peripheral venous blood samples were drawn and genomic DNA was isolated from 

whole blood using standard techniques. Genotyping was performed by allelic discrimination 

using TaqMan Universal PCR master mix (Applied Biosystems, Nieuwerkerk aan den IJssel, The 

Netherlands), primers (forward: 5’-TCCAAAGAATCATTAACTCCTGGTAGA-3’and reverse:5’-

GCTCCTCCTCTTAGGGTTTTATAGAAG-3’) and  probes (Applied Biosystems) and a Taqman ABI 

Prism 7700 Sequence Detection System (Applied Biosystems). Used probes were 5’-FAM-

ACATCTCCCCTCTCCTGAGCAAGC-3’ and 5’-VIC- ACATCTCCCTTTTCCTGAGCAAGCA-3’ (Applied 

Biosystems). Reaction components and amplification parameters were based on the 

manufacturer’s instructions using an annealing temperature of 60° C and optimized 

concentrations for primers and probes of 400 nmol/L and 100 nmol/L, respectively. We re-

analyzed genotypes in 100 samples by PCR-RFLP analysis using the MnlI restriction enzyme 

(New England Biolabs, Leusden, The Netherlands) and a digestion of 1 hour at 37 °C and found 

identical genotypes.  
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Assessment of covariates 

Covariates were assessed similarly in both studies. Body mass index (BMI) was calculated as 

weight divided by the square of height. Blood pressure was measured twice on the right arm 

with a random zero sphygmomanometer. We used the average of these two measurements. 

Diabetes mellitus was defined present if participants reported use of oral antidiabetic treatment 

or insulin, or if a random serum glucose level exceeded 11.1 mmol/l at baseline. Smoking 

habits were assessed with a structured questionnaire. Serum total cholesterol levels were 

determined using an automated enzymatic procedure. A history of stroke at baseline was 

obtained through self-report and by checking medical records. Once subjects enter the 

Rotterdam Study, they are continuously monitored for major events through automated linkage 

of the study database with files from general practitioners and the municipality. Also nursery 

home physician’s files are scrutinized. For reported events, additional information (including 

brain images) is obtained from hospital records. An experienced stroke neurologist reviewed all 

available information on all possible strokes and transient ischemic attacks to diagnose and 

categorize types of stroke. Apolipoprotein-E (APOE) genotyping was performed on coded DNA 

samples without knowledge of the diagnosis. The PCR product was digested with the restriction 

enzyme HhaI, and fragments were separated by electrophoresis.39  

 

Data analysis 

First, we examined the relation between the ER22/23EK polymorphism and dementia within the 

Rotterdam Study. The likelihood for ER22/23EK-carriers of being demented at baseline was 

assessed by means of logistic regression. The prospective relation with incident dementia was 

assessed with Cox proportional hazard models. Follow-up time was calculated from baseline 

until death, diagnosis of dementia, or end of follow-up, whichever came first. Age at onset of 

dementia was determined as age at diagnosis. Linear regression analysis was used to study the 

association between the polymorphism and MMSE in both the Rotterdam Study and the 

Rotterdam Scan Study, and to analyze cognitive functioning in more detail using compound 

scores for neuropsychological tests in the Rotterdam Scan Study. Since the ER22/23EK 

polymorphism has been associated with absence, rather than presence of disease, compound 

scores were further analyzed using logistic regression after dichotomization at the median level 

to compare relatively bad performers (below the median) with good performers (above the 

median).  

Differences between the distribution of the ER22/23EK polymorphism and structural 

abnormalities on MRI were studied in the Rotterdam Scan Study. Both measures of brain 

atrophy and white matter lesions were analyzed using analysis of covariance (ANCOVA). We 

used logistic regression to investigate the possible association with the presence of a brain 

infarct on the baseline scan, and - since we hypothesized that the ER22/23EK polymorphism is 

associated with absence rather than presence of white matter lesions - with white matter 
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lesions dichotomized according to presence or absence of these lesions at baseline. Progression 

of white matter lesions at follow-up was also analyzed according to presence or absence of 

progression of lesions (no versus any progression).  Due to the low number of participants with 

marked progression (approximately 10% in both periventricular and subcortical regions), minor 

and marked progression were not analyzed separately. The limited number of incident infarcts 

also precluded a separate analysis on incident infarcts on MRI.   

All analyses were adjusted for age and sex. To elucidate whether associations might 

be explained by vascular intermediates, analyses were repeated after additional adjustments 

for hypertension, body mass index, diabetes, cholesterol levels, as well as smoking status and 

exclusion of subjects with a history of stroke at baseline. In addition, subjects with a stroke 

preceding a dementia diagnosis were censored at the date of stroke diagnosis in the analyses 

on dementia incidence (and follow-up time was then calculated from baseline until diagnosis of 

stroke). The analyses on progression of white matter lesions where also repeated after 

adjustment for baseline white matter lesions. In all analyses, heterozygous and homozygous 

carriers were analyzed together as carriers of the ER22/23EK polymorphism. All analyses were 

performed using SPSS statistical software version 11 (SPSS Inc., Chicago, Illinois). 

 

Results 

 

Baseline characteristics for both study samples are shown in table 1. GR genotypes were 

present for 6034 participants in the Rotterdam Study. We identified 389 heterozygous 

ER22/23EK-carriers (6.5%) and 7 homozygous ER22/23EK-carriers (0.1%) in this population. 

At baseline, data on dementia were present in a total of 5990 participants of whom 395 carried 

the ER22/23EK polymorphism. In the Rotterdam Scan Study, GR genotypes were present for 

1011 participants (78 (7.7%) heterozygous and 1 (0.1%) homozygous ER22/23EK-carriers 

respectively). Genotype frequencies of both study populations were in Hardy-Weinberg 

equilibrium.   

 

 
Dementia 
In the Rotterdam Study genotype frequencies of the ER22/23EK allele were 6.8% in the non-

demented and 1.2% in the demented at baseline. Two out of 172 participants with dementia 

(both AD) had one ER22/23EK allele. After adjustment for age and sex, the frequency of the 

ER22/23EK allele was significantly lower (more than 80%), in both dementia and AD patients 

compared to non-demented subjects (table 2). After exclusion of those demented at baseline, 

the cohort was followed for incident dementia.  During 38.763 person-years of follow-up (mean 

(SD) 5.8 (1.6) years) 329 participants developed dementia, of whom 243 had AD. 
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Table 1: Baseline characteristics of the study populations* 

 Rotterdam Study Rotterdam Scan Study† 

Number of study participants  6034 1011 

Age (years) 69.3 (9.0) 72.3 (7.4) 

Gender (% female) 59.7 51.4 

Smoking (% current) 22.2 17.2 

Diabetes Mellitus (%) 10.1 7.1 

Systolic blood pressure (mmHg) 139.3 (22.2) 147.6 (21.6) 

Diastolic blood pressure (mmHg) 73.7 (11.4) 78.9 (11.8) 

Body mass index (kg/m2) 26.3 (3.7) 26.6 (3.6) 

Total cholesterol (mmol/l) 6.6 (1.2) 5.9 (1.0) 

ER22/23EK carriers (%) 6.6 7.8 

* Values represent means (standard deviation) or percentages (%) 
† Overlap with Rotterdam Study n=515 participants 

 

 

Sixteen participants with one ER22/23EK allele developed dementia during follow-up (of whom 

12 had AD and 3 vascular dementia), whereas none of the homozygous carriers did). Genotype 

frequency of the ER22/23EK allele was 6.9 % in the non-demented and 4.9 % in the demented 

participants respectively The ER22/23EK polymorphism was negatively associated with the risk 

of developing dementia. Risk for both overall dementia and AD was nearly 40% lower in 

carriers of the ER22/23EK-allele (table 2). The association remained unchanged after 

adjustment for potential cardiovascular intermediates or APOE4 genotype and exclusion of 

strokes at baseline or censorship of incident strokes. 
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Table 2:  Frequencies of the ER22/23EK polymorphism and risk of dementia* 

 Noncarriers ER22/23EK OR (95%CI) P 

Prevalent dementia     

Overall dementia (n/N*) 170/5595 (3.0%) 2/395 (0.5%) 0.14  (0.03; 0.59) 0.01 

     

   HR (95%CI)  

Incident dementia     

Overall dementia 313/5425 (5.8%) 16/393 (4.1%) 0.63 (0.38; 1.04) 0.07 

     

OR, odds ratio, 95% CI, 95% confidence interval, HR, hazard ratio, p, p-values for carriers of 

the ER22/23EK allele (non-carriers are reference). * number of cases / total number in the 

analysis 
 
Cognitive function  
After exclusion of those who were demented, MMSE scores at baseline where slightly higher in 

carriers of the ER22/23EK polymorphism, though differences were non-significant in both 

studies. The adjusted difference between ER22/23EK-carriers and noncarriers was 0.05 point 

(95% Confidence Interval (CI): -0.13; 0.23) in the Rotterdam Study and 0.26 points (95% CI: -

0.24; 0.77) within the Rotterdam Scan Study. ER22/23EK-carriers also had higher scores on the 

compound scores for memory performance, psychomotor speed and global cognitive function in 

the Rotterdam Scan Study. The average differences were not statistically significant (adjusted 

differences (95% CI) in Z-score for memory performance, psychomotor speed and global 

cognitive function: 0.06 (-0.13; 0.25), 0.13 (-0.04; 0.30) and 0.10 (-0.04; 0.24) respectively), 

but carriers were more than twice as likely to score better on tests of psychomotor speed when 

dichotomized at the median level (table 3).  

 

 

Table 3: ER22/23EK polymorphism and cognitive performance* 

Compound score Odds Ratio (95% CI) P 

Memory 1.02 (0.63; 1.67) 0.93 

Speed 2.24 (1.30; 3.89) 0.004 

Overall cognitive function 1.18 (0.70; 1.99) 0.54 

* Values represent Odds Ratios (95% confidence intervals (CI)) for carriers of the ER22/23EK 

allele to have better cognitive performance (noncarriers are reference). 
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Structural brain abnormalities on MRI 
In the Rotterdam Scan Study, no significant differences were observed between carriers and 

noncarriers of the ER22/23EK polymorphism with respect to any of the measures of brain 

atrophy on MRI, including hippocampal (p=0.49) and amygdalar volume (p=0.50), cortical 

atrophy  (p=0.50) and ventricle-to-brain ratio (p=0.43). 

 

Table 4. ER22/23EK polymorphism and white matter lesions on MRI* 

 White matter lesions 

 Periventricular Subcortical 

 OR (95% CI) P OR (95% CI) P 

     

Presence  0.47 (0.28; 0.80) 0.005 0.40 (0.21; 0.79) 0.008 

Progression 1.02 (0.47; 2.20) 0.96 0.34  (0.14; 0.84) 0.02 

*Values represent odds ratios (OR (95% confidence interval)) for presence and progression of 

white matter lesions, noncarriers are reference. 

 

Carriers of the ER22/23EK polymorphism had slightly less severe white matter lesions at 

baseline, but differences were not statistically significant. The adjusted differences for 

ER22/23EK-carriers compared to noncarriers were –0.38 points (95% CI: -0.84; 0.07 points) 

and –0.18 ml (95% CI: -0.81; 0.45 ml) for periventricular and subcortical white matter lesions 

respectively. However, when presence or absence of white matter lesions was compared, 

ER22/23EK carriers were less than half as likely to have these lesions than noncarriers (48% 

for periventricular and 40% for subcortical white matter lesions respectively) (table 4). 

Similarly, ER22/23EK carriers were less likely to have a brain infarct on their MRI scan (age and 

sex adjusted OR 0.76 (95% CI: 0.43; 1.32). In addition, ER22/23EK-carriers had almost 70% 

less progression of subcortical white matter lesions (table 4). This association remained 

unchanged after adjustment for baseline subcortical white matter lesions (OR for any 

progression: 0.26 (95% CI: 0.09; 0.73). Progression of periventricular white matter lesions was 

not different between ER22/23EK-carriers and noncarriers (table 4). 

 

Discussion 

 

In the Rotterdam Study, a prospective population-based study in the elderly, we found that the 

functional ER22/23EK polymorphism of the GR gene is associated with a nearly 40% risk 

reduction of incident dementia during a follow-up period of almost 6 years, supported by 

significantly less (86%) prevalent dementia at baseline. In addition, we observed in the 

Rotterdam Scan Study that ER22/23EK-carriers performed better on psychomotor speed tests 

and less often had periventricular and subcortical white matter lesions or brain infarctions on 
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MRI. Progression of subcortical white matter lesions was also significantly reduced in 

ER22/23EK-carriers. Interestingly, several indicators of cerebrovascular pathology did not 

significantly differ between genotypes when analyzed continuously. However, when we divided 

the participants according to presence or absence of white matter lesions, or good or bad 

psychomotor speed performance, we found highly significant differences. This supports our 

hypothesis that this polymorphism is related to healthy conditions rather than to pathological 

conditions. In both studies we did not observe associations with memory function in non-

demented subjects.  

There are several possible explanations for the protective effects on the brain we 

observed in carriers of the ER22/23EK polymorphism. First, the ER22/23EK polymorphism has 

previously been shown to be associated with a relative resistance to glucocorticoids with 

respect to the negative feedback in normal individuals.6 The regulation of glucocorticoid 

production is modulated by a negative feedback mechanism of glucocorticoids at the level of 

the hypothalamus and pituitary, which is mediated by the GR. High levels of cortisol have been 

shown to impair cognitive function, and low cortisol levels after dexamethasone, indicative of 

negative feedback function, are related to cognitive decline.11,12,14 Also,  atrophy of the 

hippocampus is facilitated by cortisol.22,23 Cortisol levels have been shown to be increased in 

both vascular dementia and Alzheimer’s disease.11,12 Thus, the lower risk on dementia and 

white matter lesions in ER22/23EK-carriers might be related to a decreased direct effect of 

cortisol on the brain, which is possibly mediated by a relative insensitive GR. However, in the 

present study we did not observe any differences in hippocampal or amygdalar volumes. 

Atrophy of the hippocampus and amygdala is associated with decreased memory function and 

is an early marker of Alzheimer’s disease.21,37 In accordance, in the Rotterdam Study, we did 

not observe differences in memory function between non-demented carriers and noncarriers. 

Also in the Rotterdam Scan Study, we found only an association with psychomotor speed 

function, but not with memory function. This could be explained by the presence of the 

mineralocorticoid receptor (MR), of which the expression in the brain is restricted to the 

hippocampal and amygdalar regions.40 Glucocorticoids can also bind with high affinity to the 

MR.41 In rat brain, it has been shown that glucocorticoids activate only MR when present in low 

concentrations (during basal conditions), and higher concentrations (during stress conditions) 

activate both MR and GR.41 Thus, glucocorticoid balance in the hippocampus and amygdala in 

basal state seems to be mainly regulated by the MR. Therefore, the beneficial effects of a 

subtle resistance of GR might be less in these brain regions. However, we have to be careful 

with the interpretation of these studies of corticosteroid receptors in the brain, because most 

data are from animal studies and it is not known whether they can be extrapolated to the 

human brain. 

An alternative, second explanation for the beneficial cerebral effects of the 

ER22/23EK polymorphism, is that this GR variant has previously been associated with lower 
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total cholesterol and LDL-cholesterol levels.6 Atherosclerosis has been associated with a higher 

prevalence of Alzheimer’s disease 42 and cognitive decline.43 In addition, periventricular, and to 

a lesser extent subcortical white matter lesions were previously shown to be associated with 

atherosclerosis.44,45 Since ER22/23EK-carriers had less often white matter lesions, as well as 

less progression of these lesions, the underlying mechanism might be a better vascular status 

in ER22/23EK-carriers.  This is supported by our finding of better psychomotor speed scores in 

carriers of this polymorphism, since psychomotor speed performance is associated with the 

presence of cerebral white matter lesions.19 However, adjustment for markers of atherosclerotic 

disease did not change our results. On the other hand, a limitation of our study is that only 

cholesterol levels at high age are available. Since midlife cholesterol concentrations in particular 

have been shown to be related to an increased risk of dementia,42 we cannot rule out the 

possibility that atherosclerosis underlies the beneficial effects of this polymorphism on the 

brain. 

A third mechanism, which possibly relates to the effects of the ER22/23EK variant 

might be through the glucose/insulin metabolism. In this context, the ER22/23EK polymorphism 

has previously been associated with a better insulin sensitivity in the elderly.6 Increased serum 

insulin concentrations and diabetes have been shown to be associated with decreased cognitive 

function and dementia.46,47 The effects of changes in insulin homeostasis on the brain can be 

either direct or via the process of atherosclerosis.47,48 

A  fourth factor in the protective effects of the ER22/23EK variant on the brain might 

be inflammation.49,50 In a population of 402 elderly men, the ER22/23EK polymorphism was 

associated with longevity and lower C-reactive protein (CRP) levels.7 In a recent study 50 higher 

CRP levels were associated with an increased risk on dementia. However, CRP levels might also 

be a reflection of cerebrovascular status.  

The molecular mechanism for the reduced glucocorticoid sensitivity as a result of the 

ER22/23EK polymorphism, has recently been elucidated. Previously, Yudt and Cidlowski 

described alternative start-codon usage (AUG-1 or AUG-27) in the GR gene. 51 The use of AUG-

27 results in a slightly shorter but transcriptionally more active form of the GR-protein, termed 

GR-B.51 We have observed that the nucleotide changes involved result in alterations in the 

secondary structure of the GR mRNA, which may shift the balance of start codon usage from 

AUG-27 to AUG-1. As a result we observed a reduction in the formation of the shorter, 

transciptionally more active GR-B synthesis.9 

We conclude from these prospective large-scale population studies that the 

ER22/23EK variant of the GR gene is associated with a lower risk on the development of 

dementia during a follow-up period of nearly 6 years, as well as less prevalent dementia in the 

elderly. Furthermore, this polymorphism is associated with a better cognitive performance with 

respect to psychomotor speed, and lower risk of periventricular and subcortical white matter 

lesions, as well as less progression of subcortical lesions. Knowledge of the factors involved in 
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the development of dementia is of great clinical relevance, because eventually it could lead to 

intervention or even prevention of this frequently occurring disease. Our data suggest that the 

mechanisms underlying the better cognitive functioning in ER22/23EK-carriers might be a 

relative resistance to glucocorticoids and, at least in part, less cerebral vascular disease.  
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Abstract 

 

Background: The most consistent biological finding in patients with depression is a hyperactivity 

of the hypothalamic-pituitary-adrenal (HPA)-axis which may be caused by impaired 

glucocorticoid signaling. Glucocorticoids mainly act through the glucocorticoid receptor (GR) for 

which several functional polymorphisms have been described. Two variants of the GR gene 

(N363S and BclI) are associated with increased glucocorticoid sensitivity while a third, 

consisting of two linked mutations (ER22/23EK) is associated with relative resistance to 

glucocorticoids. Methods: We studied whether the susceptibility to develop a depression is 

related to these polymorphisms by comparing depressive inpatients (n=490) and healthy 

controls (n=496). Among depressed patients, we also investigated the relation between the GR 

variants and dysregulation of the HPA-axis, as reflected by ACTH and cortisol responses to the 

dexamethasone suppression and the combined dexamethasone suppression/CRH-stimulation 

test (Dex-CRH test), the clinical response to antidepressive treatment and cognitive functioning. 

Results: Homozygous carriers of  the BclI polymorphism (p = 0.01) as well as ER22/23EK 

carriers (p = 0.04) had an increased risk of developing a major depressive episode compared 

to noncarriers. We did not find associations of these GR polymorphisms with functional HPA-

axis measures in depressed patients. Carriers of the ER22/23EK polymorphism, however, 

showed a significantly faster clinical response to antidepressant therapy, as well as a trend 

towards better cognitive functioning during depression.  

Conclusions: The BclI GG and ER22/23EK polymorphisms were associated with susceptibility to 

develop major depression. In addition, the ER22/23EK polymorphism is associated with a faster 

clinical response to antidepressant treatment. These findings support the notion that variants of 

the GR gene may play a role in the pathophysiology of a major depression and can contribute 

to the variability of antidepressant response.  
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Introduction 

 

A concatenation of data implicates hyperactivity of the hypothalamic-pituitary adrenal (HPA)-

axis in the pathogenesis of depression and its normalization as a necessary predecessor of 

clinical response to antidepressant drugs 1. An impaired signaling pathway via corticosteroid 

activated glucocorticoid receptors (GR), leading to an impaired negative feedback regulation 

and thus to partial glucocorticoid resistance appears to cause this hyperactivity 2. In depressed 

patients this is reflected by basal hypercortisolemia and cortisol escape from dexamethasone 

suppression3, as well as an increased ACTH and cortisol release in the combined 

dexamethasone suppression/CRH-stimulation test (Dex-CRH test) 4-6. Animal data also support 

this hypothesis as a transgenic mouse strain, expressing an antisense mRNA directed against 

the GR gene leading to impaired GR expression, displays not only neuroendocrine abnormalities 

similar to depressed patients, but also depression-like behavioral changes 7 8. In response to 

antidepressant treatment, partial GR resistance is restored 9. Clinical studies have shown that a 

resolution of the HPA-axis hyperactivity and GR insensitivity precedes clinical improvement to 

antidepressant drugs in patients 10-13. In addition, in vivo as well as in vitro studies suggest that 

antidepressants not only increase GR gene expression but also the sensitivity to glucocorticoid 

activation 2 14-17.  Increased GR activation may also promote depressive symptoms. In Cushing’s 

disease, characterized by severely increased cortisol levels, symptoms of depression frequently 

occur 18. In addition, glucocorticoids exert a positive feedback on CRH expression in limbic 

regions such the amygdala 19 20. Increased CRH neurotransmission in limbic regions has been 

associated with increased depression-like symptomatology 20. Therefore, not only glucocorticoid 

resistance seems to be related to depression, but also enhanced GR effects in limbic brain 

regions may contribute to the development of depression. This makes the GR a prime 

candidate gene forassociations with susceptibility for depressive disorders as well as an altered 

clinical response to antidepressant drugs. 

Numerous studies describe a high heritability of depressive disorders 21 and genetic 

factors leading to a changed GR sensitivity may therefore alter the susceptibility to depression 

and the response to antidepressant drugs. In addition, functional variants in this gene are also 

likely to affect the outcome of neuroendocrine tests, such as the Dex-CRH test, and 

neuropsychological tests in depressed patients. Neuropsychological deficits are frequently 

observed in depressed patients and may be related to increased HPA-axis activity. Longterm 

increases of circulating glucocorticoids have been associated with cognitive impairment, mostly 

of hippocampal 22-24 but also of ventral prefrontal functions such as the functions of the anterior 

cingulate which include divided attention 25. In a recent study, we observed that the severity of 

neuropsychological deficits in a test for divided attention at admission was predictive for 

response to antidepressant treatments 26.  
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In previous studies, we reported the characterization of several functionally relevant 

polymorphisms of the GR gene: the first is located in codon 363 (exon 2), which results in an 

asparagine (N) to serine (S) amino acid change (N363S). A second polymorphism involves a 

BclI restriction site in intron 2, and is a C to G nucleotide change, 646 bp downstream from 

exon 2 (BclI). These two GR gene polymorphisms were associated with a hypersensitivity to 

glucocorticoids, as observed by an increased response to the ACTH- and cortisol-suppressive 

effects of low dose dexamethasone 27 28 and a metabolic profile suggestive of GR 

hypersensitivity 29. In previous studies it has been shown that the N363S polymorphism is 

associated with obesity 30-33, while others could not detect any relationship with body 

composition 34 35. With respect to the BclI polymorphism also associations with obesity have 

been reported 36-38. In two healthy elderly populations the BclI polymorphism was associated 

with lower body mass index, due a lower amount of lean mass, which  also may be explained 

by an increased sensitivity to glucocorticoids 28. At present, it is not known what the effects of 

these two polymorphisms are on the brain. 

Another polymorphism of the GR gene, also located in exon 2, consists of two linked 

nucleotide changes in codons 22 and 23 (GAG AGG  GAA AAG). The first nucleotide change in 

codon 22 is silent, both coding for glutamic acid (E), and the second results in an amino acid 

change from arginine (R) to lysine (K). This ER22/23EK polymorphism was associated with a 

decreased response to the administration of 1 mg dexamethasone, suggestive of GR resistance 
39. In line with this, carriers of the ER22/23EK variant also had a better insulin sensitivity and 

lower total cholesterol and low-density lipoprotein cholesterol, as well as a sex-specific 

beneficial body composition 40. In addition, the ER22/23EK polymorphism was associated with 

lower C-reactive protein levels and longevity 41, as well as with a reduced risk on cerebral white 

matter lesions and dementia42. Recently, the molecular mechanism for the reduced 

glucocorticoid sensitivity as a result of the ER22/23EK polymorphism has been elucidated. We 

observed a change in the balance between two previously reported 43 translational variants of 

the GR protein (GR-A and GR-B). As a result of the ER22/23EK polymorphism we found a 

reduction in the formation of the shorter, transciptionally more active GR-B synthesis and an 

increase of the longer, transciptionally less active GR-A44, which could explain the relative 

glucocorticoid resistance. 

In the present study we investigated the role of these three functional polymorphisms 

of the GR gene in:  1. the susceptibility to develop a depressive episode, 2. the disturbance of 

the HPA-axis regulation which often accompanies depression using the Dex/CRH test, 3. the 

response to antidepressive treatment, and 4. cognitive functioning with respect to divided 

attention. 

  



Chapter 9 

 

  146 

Methods 

 

Patients 

490 patients admitted to our psychiatric hospital for treatment of a depressive disorder 

presenting with a unipolar depressive episode (85.6 %), bipolar disorder (13.2 %) or dysthymia 

(1.2%) as their primary psychiatric diagnoses were recruited for the study. Patients were 

included in the study within 1-3 days of admission to our hospital and the diagnosis was 

ascertained by trained psychiatrists according to the Diagnostic and Statistical Manual of Mental 

Disorders (DSM) IV criteria. Depressive disorders due to a medical or neurological condition 

were exclusion criteria. Ethnicity was recorded using a self-report sheet for perceived 

nationality, mother language and ethnicity of the subject itself and all 4 grandparents. All 

included patients were Caucasian and 92 % of German origin. The study has been approved by 

the local ethics committee. Written informed consent was obtained from all subjects.  

 

Psychopathology and definition of response to antidepressant drug treatment 

In 367 patients severity of psychopathology at admission was assessed using the 21 items 

Hamilton Depression Rating Scale (HAM-D) by trained raters, including residents in psychiatry 

and psychologists.  Ratings were performed within 3 days of admission and then in weekly 

intervals until discharge. All patients were treated at doctor’s choice with antidepressant drugs 

within a few days of admission. For all patients plasma concentration of antidepressant 

medication was monitored to assure clinically efficient drug levels. For the analysis of 

medication related effects, patients were grouped according to their primary medication within 

the first five weeks of treatment in patients having received selective serotonin reuptake 

inhibitors (SSRI), tricyclic antidepressant (TCA) and mirtazapine, a drug targeting serotonergic 

and noradrenergic receptors. 

 

The Dex-CRH test 

The Dex-CRH test was performed as described in detail by Heuser et al 4. Patients were 

administered the test within the first ten days of admission (n= 342) and the last ten days of 

discharge (n = 258). Briefly, patients were pre-treated with 1.5 mg of dexamethasone per os at 

23:00. The following day a venous catheter was placed at 14:30 and blood was drawn at 

15:00, 15:30, 15:45, 16:00 and 16:15 into tubes containing EDTA and trasylol (Bayer Inc., 

Germany). At 15:02 100 µg of human CRH (Ferring Inc., Kiel, Germany) was administered 

intravenously. For the dexamethasone suppression test (DST), morning cortisol was assessed 

at 8:00 the morning before and after 1.5 mg dexamethasone. Hormone assays for the Dex-

CRH test and the DST were identical to those described in detail by Zobel et al 45. Briefly, for 

the measurement of plasma cortisol concentrations, a radioimmunoassay (RIA) kit from ICN 

Biomedicals, Carson, CA was used with a detection limit of 0.3 ng/ml. For plasma ACTH 
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concentrations an immunometric assay without extraction (Nichols Institute, San Juan 

Capistrano, CA) was used, with a detection limit of 4.0 pg/ml. 

 

Neuropsychological testing 

Neuropsychological testing was performed within the first 10 days after admission (n = 196) 

and within the last week before discharge (n = 168). The ability to divide attention is mostly 

assessed by dual-task paradigms, therefore we used the sub-test divided attention of the TAP 

(Testbatterie zur Aufmerksamkeitsprüfung (version 1.02b; 46). This task requires simultaneous 

attention to acoustic (a series of high and low sounds) and visual (changing crosses on a 

computer screen) stimuli. Acoustic targets are the repetition of high or low sound, visual 

targets is any formation of a square composed of four crosses. The subject is required to press 

as fast as possible a response button. Performance is scored as mean reaction time in trials 

with target stimuli present. 

 

Controls 

496 controls matched for ethnicity (using the same questionnaire as for patients), sex: patients 

with 58.0 % females and 42.0 % males and controls with 59.2 % females and 40.8% males (Χ2 

= 0.15, df = 1, p = 0.69) and age: patients with a mean age of 47.57 (SD = 14.5) and controls 

46.9 (15.0) (ANOVA. F954,1=0.39; p = 0.53) were recruited. Controls were selected randomly 

from a Munich-based community sample and screened for the presence of anxiety and affective 

disorders using the Composite International Diagnostic-Screener. Only individuals negative in 

the screening questions for the above-named disorders were included in the sample. 

Recruitment of controls was also approved by the local ethics committee and written informed 

consent was obtained from all subjects.  

 

Genotyping 

On enrollment in the study, 40 ml of EDTA blood were drawn from each patient and DNA was 

extracted from fresh blood using the Puregene® whole blood DNA-extraction kit (Gentra 

Systems Inc; MN). Allelic discrimination was performed to genotype the subjects, using TaqMan 

Universal PCR master mix, primers and probes (Applied Biosystems, Nieuwerkerk aan den 

IJssel, Netherlands, see also table 1) and a Taqman ABI Prism 7700 Sequence Detection 

System as previously described 28. Reaction components and amplification parameters were 

based on the manufacturer’s instructions using an annealing temperature of 60° C and 

optimized concentrations for primers of 400 nmol/L for each polymorphism. Concentrations of 

probes we used are listed in table 1. We re-analysed genotypes of all heterozygous and 

homozygous carriers of the polymorphisms and found identical genotypes. 
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Statistical analysis 

All statistical analyses were performed using SPSS (version 11). All analyses for binary 

outcomes were performed using exact contingency table analyses. Test for odds ratios and 

allelic association in the case/control study were performed using tests adapted from Sasieni 

PD (1997) available on http://ihg.gsf.de/cgi-bin/hw/hwa1.pl. We used three types of response 

definition commonly used in psychiatric research. Early partial response at two weeks was 

defined as a greater than 20% decrease of HAM-D scores from the score obtained at admission 
47. Patients with a reduction > 20% from their score at admission were considered as “early 

responders”, while patients whose HAM-D score decreased ≤ 20% from the score at admission 

were considered as “early non-responders”. For both, response at 4 weeks of treatment and 

response at discharge a reduction of over 50% from HAM-D scores at admission was required 

to meet the responder criterion at these time points. All patients with a reduction of HAM-D 

scores equal to or less than 50% were assigned to the group of non-responders. For analysis of 

genotype-related effects on response we also used a repeated measures ANOVA with weekly 

HAM_D score from admission to week 4 as the within subject factor and a repeated measures 

ANCOVA with the HAM-D score on admission as covariate controlling for possible baseline 

differences. For analysis of genotype-related effects on cortisol and ACTH response to the Dex-

CRH test a repeated measures ANOVA with the 5 consecutive plasma cortisol and ACTH values 

from 15:00 to 16:15 against genotype was used. Other quantitative outcomes were analyzed 

using a one-way ANOVA. Considering the small n in some subgroups we also analyzed 

genotype related effects on neuropsychological and also endocrine measures using non-

parametric analyses. Individual haplotype assignments for the 3 polymorphisms were 

determined using SNPHAP. Only haplotype assignments with a remaining uncertainty of less 

than five percent and haplotypes with a frequency over five percent were included in the 

analyses. Linkage disequilibrium among the 3 markers was estimated with D’ and r2 using 

Haploview. 

 

Results  

  

Haplotype frequencies and linkage disequilibrium pattern 
All SNPs were in Hardy Weinberg Equilibrium in both the case as well as the control group. 

Haplotype estimation revealed that individuals with haplotypes containing more than one 

carrier allele were very rare (< 0.3%). Haplotype analysis did therefore not yield any additional 

information to single SNP analysis. As expected linkage disequilibrium as measured by r2 is 

very low among all markers (see Table 2). 
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Table 2: Haplotype frequencies (total sample) and linkage disequilibirium among GR 

polymorphisms in D’ and r2. 

 

D'       r2 

ER22/23EK N363S  0.06  0.0 

ER22/23EK Bcl1  1.0  0.01 

N363S  Bcl1  1.0  0.03  

 

 

ER22/23EK N363S  Bcl1  frequency (%) 

1  1  1     55.82 

1  1  2      36.68 

1  2  1     4.40 

2  1  1     2.87 

2  2  1     0.00 

1  2  2     0.00 

2  1  2     0.00 

2  2  2     0.00 

 

Case-control associations and relation to disease parameters 
Significant differences in genotype frequency could be detected between healthy controls and 

depressive patients for BclI, genotypic p value = 0.026, allelic p value 0.01, OR = 1.3 (95% CI 

= 1.063 – 1.598) but not for of the other investigated GR polymorphisms (see table 3 for 

frequency distribution) when looking at all depressed patients. We then focused our analysis 

first on patients with unipolar depression and then recurrent unipolar depression. While this did 

not change the association with Bcl1, ER22/23EK showed a significant case/control association 

and N363S a trend for such an association with unipolar recurrent depression. For ER22/23EK, 

the genotype distribution in controls was 476 (95.8%) non-carriers and 21 (4.2%) carriers and 

in unipolar recurrent depressed patients 169 (92.3%) vs. 14 (7.7%), respectively (allelic p = 

0.043, OR = 1.98 (95% CI = 1.009 – 3.084)). For N363S the genotype distribution in controls 

was 336 (91.3%) non-carriers and 32 (8.7%) carriers and in unipolar recurrent depressed 

patients 142 (86.4%) vs. 23 (13.6%), respectively (allelic p = 0.11). We could not detect any 

association of the investigated polymorphisms with age of onset, number of previous 

depressive episodes nor distribution of unipolar vs. bipolar disorder or psychotic vs. non-

psychotic depression. There was also no genotype-dependent difference in the primary class of 

antidepressant drug treatment in the first five weeks of treatment. 
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Table 3:  Frequencies of three polymorphisms of the glucocorticoid receptor gene in healthy 

controls and depressive patients. *1 patient homozygous for the carrier allele. §1 control 

homozygous for carrier allele. 
Polymorphism  Healthy controls N (%) Depressive patients N (%) 

    

ER22/23EK Non-carriers 476 (95.8 %) 462 (94.3 %) 

 Carriers 21 (4.2 %) 28* (5.7 %) 

    

N363S Non-carriers 336  (91.3 %) 395 (90.8 %) 

 Carriers 32§ (8.7 %) 40 (9.2%) 

    

BclI Non-carriers 163 (43.6 %) 162 (37.0 %) 

 Heterozygous carriers 174 (46.5 %) 208 (47.5%) 

 Homozygous carriers 37 (9.9%) 68 (15.5%) 

 

Response to antidepressant treatment 
Patients carrying the ER22/23EK polymorphism responded more quickly to antidepressant drug 

treatment. We found a significant association of the ER22/23EK genotype and early responder 

status after two weeks of treatment (p = 0.008). Among patients that were heterozygote for 

the ER22/23EK polymorphism only 2 were in the early partial non-responder group, while 19 

were in early partial responder group (see table 4). This corresponds to an odds ratio of 5.17 

(95% CI: 1.18 – 22.58) (allelic test). Using a repeated measures ANOVA for HAM-D scores 

from admission to week 4 against the ER22/23EK genotype we observed a significant effect of 

the change in HAM-D score between admission and the first 4 weeks of treatment 

(F(4,315)=94.6; p< 0.0001). When controlling for HAMD-D baseline difference on admission 

we found a significant genotype effect of the ER22/23EK variant on the HAM-D score 

(F(1,314)=5.01; p=0.026) (figure 1). Carriers of the ER22/23EK polymorphism remitted (HAM-

D score below 10) on average 5 days faster to antidepressant treatment than non-carriers. 

However, HAM-D scores at admission and at discharge did not differ significantly between 

carriers and non-carriers of the ER22/23EK polymorphism (HAM-D score at admission, mean 

(SD) = 25.5 (7.4) for non-carriers and 25.4 (8.0) for ER22/23EK-carriers; HAM-D score at 

discharge = 9.2 (5.0) for non-carriers and 9.7 (6.7) for ER22/23EK-carriers). No significant 

associations between response to treatment and the BclI or N363S polymorphisms were found. 
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Neuroendocrine and neuropsychological measures in depressive patients in relation 
to GR polymorphisms 
Using a repeated measures ANOVA, one way ANOVA and non-parametric tests, we found no 

significant genotype effect on ACTH or cortisol response in the Dex-CRH test at admission, as 

well as discharge for any of the tested polymorphisms. Homozygous carriers for BclI showed a 

non-significantly higher cortisol response in the Dex-CRH test at admission (p = 0.1) and 

N363S carriers showed a trend for a higher cortisol response from admission to discharge 

(repeated measures ANOVA on cortisol area under the curve (AUC) from admission to 

discharge (p = 0.068). No significant genotype-related differences were found for basal 

morning cortisol, morning cortisol after DEX and the ratio between these two parameters 

(suppression ratio). There was a trend for a lower basal morning cortisol in ER22/23EK carriers 

(p = 0.09). Figures 2A-F depict the Dex-CRH test and the DST at admission and at discharge 

according to the 3 polymorphisms.  

 

Table 4: Frequencies of the ER22/23EK polymorphism according to early partial response 

status at 2 weeks of antidepressant treatments.  

Polymorphism 
 

 

Early non-responders 

N (%) 

Early responders 

N (%) 
P 

     

ER22/23EK non-carriers 122 (98.4 %) 224 (92.2 %) 0.008 

 carriers 2 (1.6 %) 19 (7.8 %)  

 

Figure 1: The response to 

antidepressant treatment in 

relation to the ER22/23EK 

polymorphism of the 

glucocorticoid receptor 

gene. ER22/23EK-carriers 

(black squares) responded 

faster to treatment than 

non-carriers (white 

squares). N = 297 non-

carriers and 20 carriers. 

HAM-D, Hamilton 

Depression Rating Scale. 

**p<0.05, *p=0.06 
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In order to study whether cognitive functioning in depression is related to GR polymorphisms 

we assessed parameters of divided attention in all depressive patients. Using a Mann-Whitney 

U test, we observed a shorter reaction time in the test for divided attention in patients carrying 

the ER22/23EK polymorphism (N=10) than in patients not carrying this polymorphism (N=186, 

667 ± 93 ms vs 726 ± 134 ms, p = 0.08) . At discharge, ER22/23EK-carriers (N=9) also 

appeared to perform better in this test compared to non-carriers (N=159, 637 ± 108 ms  vs 

695 ± 112 ms), albeit this difference did not reach statistical significance (p= 0.26). No 

significant associations of the reaction time in this test could be found for the BclI or N363S 

polymorphisms. 

 

 

Discussion 

 

Major depression is a disorder with high heritability 21 but individual episodes are frequently 

triggered by stressful life events, pointing to a role of stress hormones in the etiology of this 

disease. Indeed, it has been shown that depression is often accompanied by a hyperactivity of 

the HPA-axis related to an impaired negative feedback regulation of the GR, which normalizes 

prior to clinical response to antidepressant treatment 1. Because of their inherent differences in 

glucocorticoid function, carriers of the ER22/23EK, N363S and Bcl1 polymorphisms could be 

expected to be more or less prone to develop a major depression. In this study the frequency 

of the BclI GG carriers was significantly higher in cases than in healthy controls. The frequency 

of ER22/23EK-carriers was not significantly higher in depressive patients compared to controls 

when tested for all depressive patients. However, after selection of only unipolar, recurrent 

depressive patients, we observed an association with the ER22/23EK polymorphism, which  

might be explained by a more genetically determined susceptibility to develop depressive 

episodes of this severely affected subgroup. 

It may seem surprising, that  two polymorphisms, which have been associated with 

opposite effects of GR sensitivity 29 are both related to depression. As mentioned in the 

introduction, however, increased as well as decreased GR sensitivity could lead to depressive 

symptoms. Glucocorticoids have been shown to act as positive or negative transcriptional 

regulator of the neuropeptide CRH in a brain region dependent manner. While the GR exerts a 

negative feedback on CRH in the hypothalamus, it increases CRH expression in limbic regions 

such as the amygdala 19 20. Increased CRH in limbic regions has been linked to depression-like 

symptoms 1. Previously, we have shown that heterozygous and homozygous BclI-carriers have 

an increased sensitivity to glucocorticoids with respect to the adrenal negative feedback action 
28. Homozygous BclI carriers may thus have an increased positive glucocorticoid feedback on 

CRH in the limbic system, resulting in an increased production of CRH and thereby depressive 

symptoms. 
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Figure 2: Panels A-C show the morning cortisol response in the Dex-CRH test at admission (on 

the left) and at discharge (on the right) according to A: ER22/23EK, B: N363S, C: BclI. 100 µg 

of CRH were administered at 15:02. Panels D-F show the morning cortisol levels in the DST at 

admission (on the left) and at discharge (on the right) according to D: ER22/23EK, E: N363S, 

F: BclI. 

 

On the other hand, it has been shown that this polymorphism has highly tissue-specific effects, 

with both increased as well decreased GR sensitivity reported 48 49. It is therefore still unclear 

how this polymorphism would affect GR sensitivity in the different brain regions. Increased GR 

resistance has been described as one of the endocrine hallmarks of depression part of a vicious 
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circle of HPA-axis dysregulation leading to an upregulation of central CRH and AVP expression 1 

2. The inherent GR-resistance associated with ER22/23EK carrier status may thus predispose 

these patients to develop depressive symptoms in response to stressful life events. It has to be 

noted though, that especially for the 2 relatively rare polymorphisms (ER22/23EK and N363S) 

the power to detect such association may have been low and replications in much larger 

cohorts are needed.  

In healthy probands, the relative resistance to glucocorticoids associated with the 

ER22/23EK variant was reflected by a diminished plasma cortisol response to the suppressive 

effects of an overnight administration of 1 mg of dexamethasone 39. The relative 

hypersensitivity of the glucocorticoid receptor associated with the N363S and BclI 

polymorphism was identified by an increased response to the ACTH- and cortisol-suppressive 

effects of low dose dexamethasone 27 28. In the present study, we could not detect consistent 

effects of these polymorphisms in the Dex-CRH test and the DST administered to depressed 

patients.  This may be explained by the previously described  state-dependent GR resistance 

and increased activity of the ACTH secretagogues CRH and arginine vasopressin (AVP) 

presumed during an acute depressive episode, leading to increased HPA-axis-responses in all 

genotypes 1 50. These state-dependent effects on HPA-axis regulation subside after remission as 

reflected by a normalization of the Dex-CRH test performed at discharge in both carriers and 

non-carriers. In parallel with the findings in healthy probands, one might have expected to see 

the previously observed endocrine phenotypes in the DST administered at discharge, with the 

subsiding of the state dependent HPA-axis abnormalities. It has to be noted though that only 

60% of the discharged patients show a complete remission of their depressive symptoms 

(HAM-D score < 10). When the analyses were restricted to only these patients, we still did not 

observe any genotype-dependent differences in the DST. In addition to a possible lack of 

power, especially with the rarer polymorphisms, this may be due to several factors impacting 

the HPA-axis in remitted depressed patients. It has been shown that among remitted patients, 

those who will relapse within 6 months, already display a marked hyperactivity in the Dex-CRH 

test 45. Furthermore, previous depressive episodes and HPA-axis hyperactivity may permanently 

alter the reactivity of the axis as the activation of the GR has been shown to changes 

methylation pattern of specific genes 51. Finally, differences in the doses of dexamethasone 

used for healthy probands and patients could also account for these differences.  

The clinical response to treatment, especially during the first weeks of treatment was 

significantly faster in ER22/23EK-carriers. This is not likely due to associations of the genotype 

with differences in disease history or treatment regimen that may influence response to 

antidepressant treatment as the ER22/23EK variant was not associated with any of the tested 

parameters related to these variables. Experiments in transgenic mice showed that genetically 

determined functional GR impairment can be overcome by antidepressant treatment, leading to 

a normalization of the behavioral and neuroendocrine phenotype 9. A common in vitro effect of 
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many antidepressant drugs is an increase in GR mRNA levels, as shown in neuronal cells 52, 

fibroblasts 7 and peripheral blood cells 53. Also in vivo an upregulation of GR expression 

following antidepressant treatment has been reported in hippocampal regions and the 

hypothalamus  of rats 14-17. In addition, Pariante et al reported that several types of 

antidepressants inhibit membrane steroid transporters and thereby stimulate GR-mediated 

gene transcription and thus enhance the effects of cortisol 54. Finally, clinical studies have 

shown that a resolution of the HPA-axis hyperactivity and GR insensitivity precedes clinical 

improvement to antidepressant drugs 4 10 11 13 55. ER22/23EK-carriers may benefit more rapidly 

than non-carriers from an upregulation and increased function of the GR following 

antidepressant treatment. Due to a chronic state of GR-resistance, parallel regulatory pathways 

attenuating HPA-function may be more easily modulated by antidepressants in ER22/23EK 

carriers. One of these parallel regulatory pathways could be the HPA-axis suppressive effects of 

hippocampal mineralocorticoid receptors (MR). The MR binds glucocorticoids with higher affinity 

than the GR and activation of hippocampal MR has been shown to exert tonic inhibitory effects 

on the HPA-axis 56 57. Following antidepressant treatment, the hippocampal expression of this 

receptor is upregulated more quickly than GR expression 14-17. In addition, persistent GR 

resistance may alter the expression profile of GR-regulating chaperones and co-chaperones. 

One of them, FKBP5, has been shown to be involved in faster response to antidepressant 

drugs58.  

Neuropsychological deficits are commonly seen in depressed patients 59. In the 

present study, cognitive function was tested by a test for divided attention, that is a task 

requiring simultaneous attention to acoustic and visual stimuli. Impairment in divided attention 

has been showed to be related to therapy-resistance, as well as an elevated risk to relapse 

during a follow-up period of six months 26. During the acute phase of the depressive episode 

ER22/23EK-carriers tended to perform better than non-carriers in this test, suggesting that 

carriers of the ER22/23EK variant may be relatively protected from possibly  harmful effects of 

elevated HPA-axis activity on cognitive function 25. In addition, at discharge there was a non-

significantly better performance by ER22/23EK-carriers in the divided attention test as well. 

This suggests that either the baseline level of this type of cognitive functioning is higher in 

ER22/23EK-carriers, or that the deleterious effects of a depressive episode on the brain are 

sustained longer in non-carriers. Majer et al 26 indicated that the divided attention test could be 

used as a valuable predictor for the course of depression and control of therapy effectiveness, 

as a better performance in this test at admission was associated with a faster response to 

antidepressant drugs 26. This is in accordance with our observations that the ER22/23EK 

polymorphism is associated with both a faster response to antidepressant therapy, as well as a 

slightly better divided attention performance.  

The three genetic polymorphisms influencing GR sensitivity in non-depressed subjects, did not 

show any association with HPA-axis related endocrine outcomes in depressed patients. 
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Depression-related HPA-axis dysfunction appears to override the inherent GR-polymorphism-

related ones, indicating that this system can be regulated at various levels. The BclI and the 

ER22/23EK polymorphism of the GR gene appear to be associated with the development of 

depression. In future studies this finding needs to be replicated in different and larger 

populations. The ER22/23EK variant, that has been associated with partial GR resistance in 

healthy subjects, was also associated with a faster response to antidepressant therapy. This 

finding is of particular interest with regards to a paper recently published by our group that 

showed a strong association of polymorphisms within a GR-regulating co-chaperone of hsp90, 

FKBP5, with response to antidepressant drugs 58. If this present finding is replicated, this would 

be the second HPA-axis regulating gene associated with favorable response to antidepressant 

treatment and may point to HPA-axis regulation as a common final mechanism of action of 

currently used antidepressants. 

In conclusion, this is the first report, demonstrating an association of functional GR 

polymorphisms with depression and antidepressant response. This further strengthens the 

hypothesis of a causal involvement of the HPA-axis in the pathogenesis of depression.  
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In this thesis we focussed on several polymorphisms of the GR gene, which are associated with 

altered glucocorticoid (GC) sensitivity, body composition, metabolic parameters, and cerebral 

effects. As shown in figure 1 three functional polymorphisms are located in exon 2  

(transactivating domain) and intron 2, and one variant is located in exon 9β. This is in contrast 

to the previously described rare mutations causing the syndrome of GC resistance, which are 

predominantly located in the ligand-binding domain. Glucocorticoids (GCs) are essential for 

many regulatory processes in the human body, so a mutation leading to absolute resistance to 

GCs seems not compatible with life. The previously described patients, carrying a mutation of 

the GR gene, demonstrated a decreased negative feedback at the level of the pituitary gland. 

This leads to hyperactivation of the HPA-axis. Many of the symptoms, which can be found in 

patients with GC resistance are the consequence this compensatory increased HPA-axis activity: 

hyperandrogenism (in particular leading to symptoms in females and children before puberty) 

and increased mineralocorticoid effects. The latter effects are due to the exposure of the 

mineralocorticoid receptor to high concentrations of cortisol, which cannot be effectively 

inactivated by 11β hydroxysteroiddehydrogenase II (11β HSD II). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic overview of the GR gene, showing polymorphisms (white arrows), which 

have been shown to alter GC sensitivity and are associated with differences in body 

composition and metabolism, as well as mutations (black arrows) leading to the syndrome of 

cortisol resistance. 

 

Polymorphisms, which are common variations at the DNA level occurring in the normal 

population, have much more subtle effects. However, because of their high frequency in the 

population their impact may be considerable. In several studies the polymorphisms in the GR 

gene described here seem to be significantly associated with variations in sensitivity to 

endogenous GCs within the normal population. Table 1 shows an overview of the four 

polymorphisms discussed in this thesis and their relation with altered GC sensitivity.  
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Table 1:  Four Polymorphisms of the GR gene, Studied in the Same Population in Relation to 

Glucocorticoid Sensitivity.  

Polymorphism BclI N363S ER22/23EK TthIIII 

N 191 216 202 205 

     

Fasting Cortisol not different Not different not different not different 

Sensitivity to 1 mg DEX increased Not different decreased not different 

Sensitivity to 0.25 mg DEX increased Increased not different not different 

     

DEX: dexamethasone, not different: no differences between genotype groups of the above 

mentioned polymorphism, N: number of individuals studied as a sample of the normal elderly 

population 

 

No associations were found with the TthIIII polymorphism. However, the ER22/23EK variant 

was found to be linked to the TthIIII polymorphism, and in this respect the associations with 

GC resistance and beneficial metabolic profile (low insulin and cholesterol levels) were also 

observed in carriers of both the ER22/23EK and the TthIIII polymorphisms. Table 2 shows the 

sequence alterations of the two noncoding polymorphisms (TthIIII and BclI) we identified and 

described in this thesis. Considering the outcomes of the DEX suppressions tests in carriers of 

the three functional polymorphisms, it seems that the 0.25 mg DEX suppression test is most 

sensitive to detect hypersensitivity to GCs, while the 1 mg DEX suppression test may be more 

suitable to detect a relative resistance to GCs (as shown in figure 2 for the polymorphisms 

described in this thesis).  

 

 

Table 2:  Fragments Length of the BclI and the TthIIII Restriction Fragment Polymorphisms 

and their corresponding Nucleotide Changes, as well as Allelic Frequencies 

RFLP Length restriction fragment* Nucleotide change Allele frequency** 

BclI 2.3 kb C 65 % 

 4.5 kb G 35 % 

TthIIII 3.4 kb C 62 % 

 3.8 kb T 38 % 

* Fragments length as described in the literature. After identification of the exact nucleotide 

change we found that the fragments of the BclI polymorphism were 2.2 kb and 3.9 kb, 

respectively.** Allele frequency as observed in a subset of subjects from the Rotterdam study, 

a population-based study in the elderly. RFLP, restriction fragment length polymorphism 
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Figure 2: Cortisol levels (nmol/l) after DEX suppression tests  (graphs on the left: A, C, E) and 

absolute change in cortisol (nmol/l) after DEX (graphs on the right: B, D, F). Results from a 

0.25 mg DST are shown for the N363S and BclI carriers, and data concerning a 1mg DST are 

shown for the ER22/23EK-carriers.  Noncarriers (white bars) were compared to:  (A and B) 

N363S-carriers (striped bars), lower post-DEX cortisol and greater decrease in N363S-carriers, 

suggest a hypersensitivity to GCs, (C and D) heterozygous and homozygous BclI G-allele 

carriers (black bars), also lower post-DEX cortisol and greater decrease in BclI G-allele carriers, 

suggesting that BclI G-allele carriers are hypersensitive to GCs, and (E and F) to ER22/23EK-

carriers (vertically striped bars), who had higher cortisol levels after 1 mg DEX and a smaller 

decrease in cortisol, which suggests that the ER22/23EK variant is associated with a relative 

resistance to GCs. 
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Facts and Fallacies 

In the past few years rapid progress in human genome sequence determination 1, 2 has 

stimulated research concerning the role of  polymorphisms in genes, which are possibly 

involved in the pathogenesis of common diseases. In the past decades linkage analysis has 

been a widely used study design to investigate the genetic basis of hereditary diseases 3-5. 

Linkage studies involve a search for genomic regions with a number of shared alleles higher 

than expected among affected individuals within a family. Using a wide variety of genetic 

markers a region can be identified, wherein an allele is present which is predisposing for a 

certain disease. The identified linked regions can be fine-mapped with additional markers. 

Linkage analysis is a powerful tool to detect rare high-risk alleles. However, often it is difficult 

to narrow the region of interest adequately. 

  

Box 1 
Types of Genetic Polymorphisms   

Polymorphism Change Example 

Single-base nucleotide 

substitutions 

(also called single nuleotide 

polymorphim, SNP) 

 

 

Change of one nucleotide GR gene: N363S in exon 

2, BclI in intron 2 6 

Small-scale multi-base deletions or 

insertions (also called deletion 

insertion polymorphism, DIP) 

 

Insertion or deletion of 1-5 

nucleotides 

ACE gene: intronic 287-

base-pair  nonsense DNA 

domain 7 

 

Microsatellite repeat variations 

(also called short tandem repeats, 

STR) 

 

 

Repeats of a number of 

nucleotides (2, 3, or 4) 

 

IGF-1 gene: CA repeat 

in promoter 8      

AR gene: CAG repeat in 

exon 1 9 

Abbreviations: GR, Glucocorticoid receptor, ACE, angiotensin-converting–enzyme, IGF-1, 

Insulin-like growth factor 1, AR, androgen receptor. 

 

To detect genes which play a role in common multifactorial diseases with a strong 

environmental component population-based association studies have become very popular10, 11. 
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Association studies test whether a genetic polymorphism occurs more frequently in cases than 

in healthy controls. Also, certain traits can be studied and compared between carriers and 

noncarriers of a polymorphism. Most studied polymorphisms are single nucleotide 

polymorphisms, in which one of the nucleotides is substituted by another one with a frequency 

within the normal population of more than 1%. Also other types of polymorphisms  exist, e.g. 

microsatellite repeat polymorphisms or deletion/insertion polymorphisms (DIP) (Box 1).  

The techniques to detect polymorphisms have rapidly developed in the past few years, 

especially with the introduction of high-throughput techniques 12. These facilitated researchers 

to search for polymorphisms in candidate genes in large numbers of individuals in a simple, 

cheap and rapid manner. However, many limitations have to be recognized when conducting 

association studies (Box 2).  
 

Box 2 

Fallacies of Polymorphism Studies 

 

* unreliable phenotyping 

* low number of individuals studied 

* racial heterogeneity 

* population stratification (founder effect) 

* gender differences 

* age differences 

* (no) functionality of the studied gene variation 

* statistical analysis (false positive results by multiple testing) 

* publication bias 

 

An important aspect to assure high quality of an association study is reliable phenotyping. This 

includes careful recruitment of participants to rule out a bias by incorrect inclusion. As 

previously discussed by Gambaro et al phenotypic differences between studies can also exist 

due to variable definitions for cases and controls in different studies, and the heterogeneous 

phenotypic expression of certain diseases 13. Sensitivity and specificity of the methods used to 

characterize phenotype should also be taken into account. This applies to the doctor or 

researcher who performs measurements, but also for the variance in measurement of routine 
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parameters such as laboratory measurements. A problem of large-scale population studies, in 

which many steps of data-collection and many different researchers are involved is the 

occurrence of (frequently undetected) errors. These errors can occur at many levels, e.g. data-

collection, genotyping and information processing. The influence of these errors can be 

reduced by increasing the sample size, minimizing inter-researcher variation (in e.g. physical 

examination or evaluation of radiodiagnostics) and building in steps to double-check the 

measured parameters (Box 3). 
 

Box 3 
Requirements to assure high quality of association studies 
 

* good phenotyping (careful recruitment of subjects and data-collection, high sensitivity and 

specificity of tests, minimizing inter-researcher variation, double-check measured parameters) 

 

* high number of individuals studied (depending on the frequency of the studied gene 

variant) 

 

*  homogeneity of the study population, with respect to ethnicity, gender, age and 

environmental factors or using statistical corrections for these confounders 

 

* replication in different study population(s) 

 

* a good rationale for the association under investigation to increase the a priori justification 

 
* statistical analysis using multiple testing corrections  

 

* confirming in vivo results in in vitro experiments 

 

* unraveling the molecular basis of the mechanism of the studied gene variation 

 

 

A widely discussed topic is the problem of multiple testing. It is recognized that when 

performing a large number of statistical tests, the rate of false positive results (type I error) is 

relatively high 14. One way to diminish this problem is to statistically correct for multiple testing. 

However, other factors can also help to reduce the amount of false positive results. A good 

rationale for the association study, creating a high a priori justification, will increase the chance 

of finding true positive results. With respect to polymorphisms of the glucocorticoid receptor 

(GR) gene we hypothesized that the sensitivity to glucocorticoids (GCs) is associated with 
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genetic variants in the GR gene. It is known that GCs exert the majority of their effects through 

binding to the GR, which makes the GR gene a candidate gene to study the genetic basis of 

differences in the response to GCs within the normal population. We first performed in vivo 

studies using dexamethasone suppression tests, in order to investigate whether there were 

differences in GC sensitivity between carriers and noncarriers of several polymorphisms of the 

GR: N363S, ER22/23EK (two linked single nucleotide polymorphisms of which the second one 

results in a amino acid change) and the intronic BclI polymorphism. For the N363S and the BclI 

polymorphisms we found an increased response to the effects of dexamethasone, which 

indicates an increased sensitivity to the effects of GCs 15, 16. In contrast, for the ER22/23EK 

polymorphism we observed a decreased response to dexamethasone, indicating a relative 

resistance to GCs 17 (see figure 3). These findings gave us a good rationale for our next 

hypotheses concerning associations of the GR polymorphisms with other parameters affected 

by GCs, e.g. body composition and metabolic parameters (insulin, lipids). As expected we found 

associations for the ER22/23EK with measures of decreased GC effects (lower insulin levels, 

lower cholesterol levels, beneficial body composition, see figure 3)17, 18, whereas we observed 

for the N363S and the BclI associations with measures of increased GC effects (more body fat, 

higher insulin response to dexamethasone, less lean body mass)15, 16. Another way to reduce 

the rate of false positive results is to increase statistical power by, for example, increasing the 

sample size 14. 

Another important aspect is confirmation of an observed association in a different 

study population. This diminishes the risk of findings by chance. The phenotypic changes in 

carriers of the N363S, ER22/23EK and BclI polymorphisms found in the same population 

wherein the dexamethasone suppression test was performed were in accordance with the 

observed changes in GC sensitivity. In a study in Dutch elderly healthy individuals we observed 

that carriers of the BclI polymorphism (G-allele) had a lower body mass index than in 

noncarriers, which was confirmed in a separate population of elderly Dutch men 16. 

 However, a risk of replication of an observed association in a different ethnic 

population is that when the replication fails, the first association can be considered as false 

positive. It is important to realize that polymorphisms can exert different effects in different 

ethnicities. First, the frequency of polymorphisms can differ between different ethnic groups. In 

this respect is it intriguing that for example this N363S genotype, which we found to be 3.1 % 

(allele frequency) in the elderly healthy Dutch Caucasian population, is highly frequent in an 

Australian population (allele frequency 7.4 %) 19, whereas in other reports no N363S-carriers 

have been detected in a Chinese population 20 nor in a Japanese population 21, and an allele 

frequency of 0.3% in a population of South Asian origin living in northeast England 22. 

 

 

 



Chapter 10 

 

  170 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Simplified scheme of a relation between a genetic polymorphism and a 
phenotype. The ER22/23EK polymorphism of the glucocorticoid receptor (GR) gene, consists 

of two single nucleotide polymorphisms in codons 22 and 23, of which the latter results in an 

amino acid change from arginine (R) to Lysine (K). The ER22/23EK polymorphism probably 

alters the secondary structure of the mRNA of the GR, forcing a shift towards the usage of 

Methionine-1 instead of Methionine 27 as startcodon. Due to this alternative usage of 

Methionine 1 the ER22/23EK polymorphism results in an altered balance 23 of the GR-A 

(transcriptionally less active) and GR-B (transcriptionally more active) 24 forms at the protein 

level. In vitro experiments indeed showed a reduced transactivating capacity of the GR-

ER22/23EK, whereas transinhibition was unchanged since the different translational isoforms 

were even potent in inhibiting NF-κB. In addition, the capacity of the GR in the homozygous 

ER22/23EK carrier to upregulate glucocorticoid-induced leucine zipper (GILZ) protein was less, 

while transrepression of interleukin-2 (IL-2) did not differ from the control group 25. After a 1 

mg  overnight dexamethasone (DEX) suppression test carriers of the ER22/23EK polymorphism 

had significantly higher cortisol levels than noncarriers, suggesting that ER22/23EK-carriers are 

relatively resistant to the effects of glucocorticoids with respect to the sensitivity of the 

negative feedback mechanism17. The ER22/23EK polymorphism is associated with a variety of 

phenotypic changes: better insulin sensitivity, lower total and LDL-cholesterol levels, and lower 

C-reactive protein (CRP) levels, sex-specific beneficial body composition (greater height, lean 

mass en muscle strength in male carriers and smaller waist and hip circumferences in female 

carriers), lower risk on the development of dementia and cerebral white matter lesions, as well 

as longevity 17, 18, 26, 27. All these phenotypic changes in ER22/23EK-carriers can be explained by 

their subtle decreased sensitivity to glucocorticoids. 
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Second, the presence of a combination with other polymorphic genes, which is highly variable 

between ethnicities, can also lead to a different phenotype. Third, environmental factors can 

contribute to the effects of a certain polymorphism on the phenotype. In our example of the 

N363S polymorphism of the GR gene, the hypersensitivity to GCs may results in pattern of 

easier fat storage due to hypersensitive insulin secretion in N363S carriers 15, 28. In an 

environment with high fat diet, these carriers are more likely to become obese than in a setting 

where a low fat diet is more common, and subsequently this variant can result in different 

phenotypes. In addition, population stratification is a major problem of association studies, 

which is also referred to as the “founder effect” 10. This is the tendency that within populations 

high frequencies of both certain genes as well as certain diseases are present, possibly leading 

to false positive associations. Lohmueller et al suggested that larger sample sizes, as well as 

studies with family-based controls can help to avoid this problem and to make results more 

likely to be replicated 29.  

Also sex-specific or age-dependent associations of polymorphisms have been 

described. An example of a sex-specific association of a polymorphism of the GR gene is the 

ER22/23EK variant. At young adult age, male ER22/23EK-carriers were on average taller, had 

more lean mass, and were stronger (see figure 3), whereas female ER22/23EK-carriers showed 

a tendency towards lower fat mass and smaller waist and hip circumferences 18. Both 

associations can be explained by a relative resistance to the effects of GCs, as previously 

shown in a population including both men and women 17. However, the reason  why different 

associations with respect to body composition have been found in men and women remains 

unclear, but hormonal factors may play a role in these differences. An example of an age-

dependent association of a GR polymorphism is the relationship of the BclI with body mass 

index (BMI). In middle-aged subjects this variant has been found to be associated with an 

increased BMI, as well as waist-to-hip ratio (WHR)30. In contrast, in two elderly populations we 

found this variant to be associated with lower BMI 16. However, since BMI does not differentiate 

between fat mass and lean mass we also studied their body composition using DEXA scans. We 

observed that carriers of the BclI variant allele (G-allele) showed a tendency towards lower lean 

mass, whereas no differences were found in fat mass, which suggests that these carriers 

suffered more from sarcopenia during the normal aging process than noncarriers of this variant 
16. Both the increased BMI and WHR in middle-aged individuals (more abdominal fat mass) and 

the decreased BMI in older persons (more loss of lean mass during aging) can be explained by 

an increased sensitivity to GCs, as previously shown 16. In this way polymorphisms can be 

associated with a certain hormonal or metabolic condition, which can due to numerous other 

processes throughout the human body result in different phenotypes at different ages. 

Therefore, in replication studies it is important that besides ethnicity, factors as gender and age 

are also taken into account. 
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Another important feature of association studies is that there should be a biological plausibility 

for a candidate gene. Usually genes are chosen as candidate gene when they code for an 

important factor in the pathway of a certain process and thus can be involved in the 

pathophysiology of a disease. Also linkage analysis can lead to the detection of certain 

candidate genes. After an association between a polymorphism and a phenotype is found, it 

does not necessarily mean that there is a causal relationship. A polymorphism can  be in 

linkage disequilibrium with another polymorphism in the same gene or even in an adjacent 

gene.  

In vitro testing of the effects of a polymorphism can help to distinguish between 

functional and non-functional polymorphisms. In our example of the GR gene Russcher et al 

observed that the ER22/23EK polymorphism influences the transactivating capacity of the 

glucocorticoid receptor, while transrepression of NF-κB activity is not affected 25. In addition, 

Russcher et al studied the upregulatory effects by investigating the effects of the ER22/23EK 

variant on glucocorticoid-induced leucine zipper (GILZ) protein, as well as the downregulatory 

effects on interleukin-2 (IL-2). The capacity of the GR in the homozygous ER22/23EK carrier to 

upregulate GILZ was less, while transrepression of IL-2 was equal to the control group (see 

figure 3). This was consistent with our findings in vivo of a reduced sensitivity in ER22/23EK-

carriers. Russcher et al also studied the in vitro effects of the N363S variant and found that this 

polymorphism increases the transactivating capacity, both, in vitro and ex vivo 25, which is 

consistent of our findings of an association of the N363S variant with increased glucocorticoid 

sensitivity in vivo 15.  

Furthermore, the location of the polymorphism within the gene is important with 

respect to functionality. For example, the N363S polymorphism results in a change of 

asparagine to serine, which creates a potential phosphorylation site and could be relevant for 

DNA binding by the GR 31, 32. However, the exact mechanism of the N363S has not been 

elucidated at present. In contrast, the molecular mechanism through which the ER22/23EK 

polymorphism reduces GC sensitivity has recently been clarified by Russcher et al 23. Yudt et al 
24 reported that at least two different methionine codons in the GR mRNA are used as initiation 

codon: AUG-1 and AUG-27, resulting in two translation variants, the 94 kDa GR-A and the 91 

kDa GR-B protein, respectively. The shorter GR-B protein had a stronger transactivating effect 

in transient transfection experiments 24. The sensitivity in GR(ER22/23EK)-carriers is decreased, 

because more of the longer, less transcriptionally active GR-A isoform is formed 23 (see figure 

3). The polymorphism probably alters the secondary structure of the mRNA of the GR, forcing 

more translation initiation from AUG-1. The study of Russcher et al indeed shows a reduced 

transactivating capacity of the GR-ER22/23EK and can be explained by the changed GR-A/GR-B 

ratio. Transinhibition seems to be unchanged because the different translational isoforms were 

equally potent in inhibiting NF-κB 25. 
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Functionality of intronic polymorphisms remains a difficult issue. Intronic 

polymorphisms are often considered as nonfunctional, because they do not change the coding 

sequence. However, they can still be involved in the splicing process for example by changing 

the sequence of so-called intronic splicing silencers or enhancers or other mechanisms 

important for the expression of the gene 33. 

For the majority of the polymorphisms a molecular mechanism has not been found 

yet. To study the effects of polymorphisms other methods than studying the associations of 

one single polymorphism with phenotypic data has become popular over the past few years, 

e.g. haplotype analysis. Haplotypes have been constructed, consisting of alleles containing a 

number of polymorphisms throughout one gene and in this way the association of phenotypic 

changes with certain risk alleles could be identified. In our example of the GR gene, Stevens et 

al constructed a haplotype and found this to be associated with an increased sensitivity to GCs 
34.  Interestingly, the three polymorphisms of the GR gene described in this review sofar were 

found to exclude each other, i.e. they never occur on the same allele 35, which simplifies the 

analysis of association studies concerning these polymorphisms.  

 A problem with respect to association studies which is often discussed is the fallacy of 

publication bias, whereby journals tend to publish rather positive than negative results 36. 

However, by a large meta-analysis comprising 301 publications on 25 associations Lohmueller 

et al convincingly showed that publication bias seems implausible to account for the 

inconsistency in the reproducibility of association study results 29. In eleven of these 25 

associations the results were very well replicable (which is however still less than 50 %). 

Lohmueller et al state that underpowered non-significant studies of real associations with 

modest genetic effects can reasonably account for much of the variability in replication. This 

meta-analysis shows again the need for well-designed and sufficiently powered replication 

studies of every positive association between a common polymorphism and a common complex 

disease. 

 Worldwide many genetic data became available by the Human Genome Project, and 

technical and informatic methods have rapidly improved. In the future a shift towards whole-

genome association studies may become apparent 37. However, also for these future whole-

genome association  analysis careful study design remains number one priority. 

 

Clinical Relevance 

The observed associations with altered sensitivity to GCs may contribute to a better 

understanding of the variations in regulation of the HPA-axis between normal individuals. 

Previous data suggest that the setpoint of the HPA-axis in humans might be to a large extent 

genetically determined, since the intra-individual baseline cortisol concentrations are highly 

reproducable 38. These GR gene polymorphisms seem to have modifying effects in conditions 

such as atherosclerosis. It is known that some individuals survive till a high age, although they 
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have increased cholesterol levels 39, thus they might be protected by a genetic variant such as 

the ER22/23EK. On the other hand, individuals who carry the N363S or the BclI polymorphism 

might be more at risk for cardiovascular disease. The N363S variant recently has been found to 

be associated with coronary artery disease, independent of obesity, as well as with increased 

total cholesterol and triglyceride concentrations and an elevated total cholesterol/HDL ratio 40.  

In clinical practice, GCs are widely used for the treatment of numerous diseases, such as 

asthma, chronic inflammations, prevention of rejection of organ transplants, as well as 

replacement therapy. It is well known that the effects of treatment with GCs vary considerably 

between patients. Some patients respond very well to the therapeutical administration of GCs, 

but also develop serious side effects, while others need a very high dose to establish any 

clinical effect and do suffer less from side effects. The response to GCs of the majority of 

patients, however, lies between such extremes . It is likely that these polymorphisms are to 

some extent responsible for the variability in the responses to therapeutically used GCs. In the 

future, after appropriate additional research, it might be useful to screen for the presence of 

these GR gene variants to determine an individual’s dose of GCs. This dose should be adjusted, 

taking into account the genetically determined sensitivity to GCs, to a person’s need, in such a 

way that it is therapeutically effective, but does not cause side effects. At present, we do not 

know whether the altered sensitivity associated with these polymorphisms differs for various 

types of clinically used GCs and whether the manner of application (local, systemic) influences 

the effects of the polymorphisms. 

 With respect to the ER22/23EK polymorphism we studied this variant at various ages 

(figure 4). During puberty we observed that male carriers showed tendencies towards greater 

body height, lean mass and greater muscle strength. These differences between carriers and 

noncarriers were more pronounced and statistically significant at young adult age. In females, 

we observed associations with smaller waist and hip circumferences, suggesting less central 

fatmass. At older age, we observed a healthier metabolic profile (better insulin sensitivity and 

lower total and LDL-cholesterol levels) in ER22/23EK-carriers. Also, the risk of developing 

dementia, as well as cerebral white matter lesions was reduced. At very high age we found the 

C-reactive protein levels to be lower in ER22/23EK-carriers compared to noncarriers, possibly 

reflecting a beneficial vascular condition, as well as a tendency towards lower cholesterol 

levels. In these elderly males we also observed a reduced mortality rate after a four year 

follow-up, suggesting the ER22/23EK to be a longevity polymorphism. Although the 

associations observed with the ER22/23EK polymorphism differ between the various age 

groups, all effects can be explained by  relative cortisol resistance as a result of this DNA 

sequence alteration. 
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Figure 4: we studied the ER22/23EK polymorphism at various ages. We observed during 

puberty that male carriers showed tendencies towards greater body height, lean mass and 

greater muscle strength. At young adult age these differences between carriers and noncarriers 

were more pronounced and statistically significant. In females, we observed associations with 

smaller waist and hip circumferences, suggesting less central fatmass. At older age, we 

observed a healthy metabolic profile (better insulin sensitivity and lower total and LDL-

cholesterol levels). Also the risk of developing dementia, as well as cerebral white matter 

lesions was reduced. At very high age we found the C-reactive protein levels to be lower in 

ER22/23EK-carriers compared to noncarriers, possibly reflecting a beneficial vascular condition, 

as well as a tendency towards lower cholesterol levels. In these elderly males we also observed 

a reduced mortality rate after a four year follow-up, suggesting the ER22/23EK to be a 

longevity polymorphism. Although the associations observed with the ER22/23EK polymorphism 

differ between the various age groups, all effects can be explained by a relative resistance as a 

result of this DNA sequence alteration. 
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As we described in this thesis the ER22/23EK polymorphism has also effects on the brain. 

The risk of development of  dementia and cerebral white matter lesions was reduced in 

ER22/23EK-carriers. Since cardiovascular risk factors are associated with an increased risk of 

dementia10,11 and high cortisol levels have been associated with cognitive impairment and 

dementia12-14, these protective effects could be a result of both their decreased sensitivity to 

GCs as well as their favourable cardiovascular profile.  

 High cortisol levels have also been associated with depression 41. In this thesis we 

described that the BclI and ER22/23EK polymorphisms are associated with the susceptibility to 

develop a major depression. In addtion,  the ER22/23EK variant was related to a better 

response to antidepressant treatment, as well as a slightly better cognitive functioning as 

tested with the divided attention test during major depression. These findings are in 

accordance with previous observations that dysregulation of the HPA-axis plays a major, and 

possibly causal, role in depression, which might be (partially) genetically determined. Recently, 

Binder et al reported a genetic factor involved in the regulation of the HPA-axis. They found 

significant associations of response to antidepressants and the recurrence of depressive 

episodes with single-nucleotide polymorphisms in FKBP5, a GR-regulating cochaperone of hsp-

90 42.  In addition, these single-nucleotide polymorphisms were associated with increased 

intracellular FKBP5 protein expression. This causes alterations in the GR and thereby these 

polymorphisms are involved in HPA-axis regulation. Carriers of this specific FKBP5 haplotype 

had less HPA-axis hyperactivity during a depression. These data suggest that the FKBP5 

variant-dependent changes in HPA-axis regulation could be related to the faster response to 

antidepressant drug treatment and the increased recurrence of depressive episodes observed in 

this subgroup of depressive patients. 

 In the future, the in this thesis described associations of the ER22/23EK 

polymorphism with a protective effect on dementia and white matter lesions, as well as a faster 

response to antidepressant treatment in depressive patients, might offer possibilities to predict 

in early stages which individuals are at risk for cognitive impairment and enable to design a 

more individualized plan for treatment of depression. 

 

 

Body Composition 

Both the N363S and the BclI polymorphisms may predispose to the development of obesity. 

However, as is well known in obesity, environmental, dietary and socioeconomic factors, are 

also important determinants of the phenotype43. Furthermore, the distribution of energy 

expenditure requirements and individual substrate partitioning are known to influence the 

energy balance depending on the genetic profile43, 44. Weight gain is determined by a positive 

balance between the amount of energy consumed over the energy spent in everyday life 45. 

Evidence is accumulating that genetic factors are involved in these processes. It is commonly 
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observed that several obese members can be found within one family 46. Also, the correlation 

for body mass index (BMI) is higher in monozygotic (0.70-0.88) and dizygotic twins (0.15-0.42) 

compared to parents and children (0.15-0.23) and husband and wife (0.10-0.19)47, 48. In 

addition, studies of dietary intervention in identical twins showed that the differences in the 

susceptibility to overfeeding or periods of dietary restriction seem to be partially explained by 

genetic factors 46. Many genes have been reported to be involved in the processes leading to 

obesity. In this context, single gene mutations affecting energy intake (leptin  (LEP), leptin 

receptor (LEPR), pro-opiomelanocortin (POMC), melanocortin 4 receptor (MCR4), protein 

convertase 1(PC1)) or causing a reduction in energy expenditure (Prader Willi syndrome) 

resulting in an extremely obese phenotype have been described 49. Besides genes involved in 

the regulation of appetite (as mentioned above, as well as neuropeptide Y) body weight is also 

regulated by variations in energy expenditure (uncoupling proteins) and nutrient utilisation, 

resting metabolic rate and response to physical activity (adrenergic receptors, fatty acid binding 

protein), as well as individual differences in adipocyte metabolism (peroxisome proliferator 

activated receptors (PPAR))46. Polymorphisms in the β2-adrenergic receptor gene and the LEPR 

gene have been reported to be associated with weight gain 50.  Also a polymorphism in the 

PPARγ2 gene, as well as additive effects of variations of the β3-adrenergic receptor and 

uncoupling protein 1 genes have been shown to affect weight maintenance after  weight 

loss51,52. 

 Environmental factors and lifestyle also influence body composition. In particular 

excessive caloric intake and a sedendary pattern, which both  have become increasingly 

common in the past decades (high caloric meals and snacks, motorized transport, TV viewing, 

computer work), contribute to weight gain 53. The interactions between genetics and 

sedentarism have been evaluated in twinpairs. From these studies can be concluded that the 

genetic predisposition may modify the effect of physical activity on weight change and a 

sedentary lifestyle may have an obesity-inducing effect depending on genetic susceptibility 54, 

55. It is well known that interindividual differences in the reaction to diverse dietary 

interventions or to physical exercise exist. Differences in genetic make-up may underlie these 

variations. An example of an interaction between genes and lifestyle is the observation that 

carriers of a polymorphism of the β3-adrenergic receptor gene have an increased risk of 

developing obesity when they remain sedentary 56. 

 With respect to the GR polymorphisms described in this thesis, environmental factors 

could also play a role in the observed relationships between BMI and genotype. For example 

the effects of these polymorphisms could be influenced by the amount of stress an individual 

perceives throughout life. A period of (psychological or physical) stress is accompanied with 

increased cortisol levels. Cortisol exert its effects mainly via the GR. A person carrying the 

N363S or the BclI polymorphism, leading to an increased sensitivity to GCs, might be more 

prone to suffer from deleterious effects, e.g. abdominal obesity, diabetes, muscle atrophia, 
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than noncarriers. In this respect, we observed in a severly obese population that N363S-

carriers had an even higher BMI than obese noncarriers 28. This suggests that the N363S 

polymorphism might result in increased lipogenesis leading to higher BMI, due to an increased 

insulin response elicited by a relative hypersensitivity to cortisol. In contrast, ER22/23EK-

carriers, who are relative resistant to the effect of cortisol might be protected from these 

adverse consequences. Previously, N363S-carriers 15, 19 and BclI-carriers 57, 58 have been found 

to have an increased BMI. As described in this thesis we observed that elderly carriers of the 

BclI polymorphism had lower BMI, which may be explained by their tendency towards lower 

lean body mass 16. Beside gene-environment interactions also gene-gene interactions exist.  In 

this context, we  observed (this thesis) that carriers of both the N363S and BclI variant had 

higher cholesterol levels, as well as a tendency towards higher blood pressures, while the risk 

of carrying only the N363S or the BclI was not associated with an unfavourable cardiovascular 

profile 28.  

  

 

Evolution 

During evolution, a selection process occurred in which some de novo mutations probably had 

beneficial effects and became slowly more frequent in the population. We found that the 

ER22/23EK variant in males was associated with more lean mass and more muscle strength. In 

this view, the ER22/23EK polymorphism could have resulted in strong individuals, who had a 

greater chance to survive due to an advantage in capability of collecting food and defending 

themselves in fights. The N363S and BclI carriers may also have had advantages to survive 

through their tendency to accumulate fat, which was especially favorable in times of food 

deficit, or during pregnancy and motherhood to increase survival chances of children. In this 

respect, the BclI polymorphism probably has been arisen long ago, because the allele 

frequency in the normal population is very high. However, nowadays, in times of abundance of 

food, in combination with increased psychological stress and a lack of exercise, the N363S and 

BclI polymorphisms may have turned to a disadvantage. An increased sensitivity to GCs, 

resulting also in fat accumulation is probably one of the risk factors of atherosclerosis. This is 

supported by the findings of increased risk on coronary artery disease and obesity in N363S-

carriers in an Australian population 40, 59. 

 

Conclusion 

In conclusion, the N363S, BclI and ER22/23EK polymorphisms in the GR gene, but not the 

TthIIII polymorphism, are associated with altered GC sensitivity and result in a wide variety of 

phenotypic signs, which are not pathological per se, but partially explain an individuals 

genetically determined tendency to a certain body composition, as well as metabolic and 

mental status (figure 5).  The mechanism at a molecular level behind the associations found 
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with the ER22/23EK variant has been elucidated 23, however to clarify the mechanisms of the 

N363S and BclI poymorphisms more research is needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 5: A tentative scheme of the N-terminal part of the glucocorticoid receptor gene, in 

which three functional polymorphisms are indicated, as well as a summary of their clinical 

associations.  
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Summary 

 

Glucocorticoids are hormones, of which the production is increased in response to physical or 

psychological stress. In basal conditions these hormones are also present in the circulation, but 

in lower levels. The major glucocorticoid in man is cortisol. The effects of glucocorticoids are 

mainly mediated by the glucocorticoid receptor, which is present in virtually all tissues 

throughout the body. This thesis is focused on the gene coding for the glucocorticoid receptor. 

 As introduced in chapter 1, it is known that sensitivity to glucocorticoids is highly 

variable between normal individuals. If glucocorticoids are used therapeutically, the variability 

of clinical response and adverse effects is considerable as well. In this chapter the background 

concerning sensitivity to glucocorticoids, several polymorphisms in the glucocorticoid receptor 

(GR) and the relation to physical and mental status is described. The aim of this thesis was to 

identify common genetic polymorphisms of the glucocorticoid receptor and to investigate their 

role of in glucocorticoid sensitivity, metabolism, body composition, dementia and depression. 

In chapter 2 we identified the sequence alteration of an intronic BclI restriction site 

polymorphism of the GR gene as C/G nucleotide change. In 191 healthy elderly, we 

investigated the relation of this highly frequent variant (allelic frequency 37%) with 

glucocorticoid sensitivity using a dexamethasone suppression test. Homozygous G allele-

carriers, as well as heterozygous G-allele carriers were significantly more sensitive to the 

suppressive effects of dexamethasone in a allele-dosage way. In a large second study 

population of healthy elderly we found G-allele carriers to have a lower body mass index (BMI). 

This was confirmed in a third study population of healthy elderly men. In this latter population 

we also studied body composition. While fatmass did not differ between genotypes, we found a 

lower amount of lean mass in homozygous, as well as heterozygous G-allele carriers. This 

suggests that G-allele carriers suffer more from the loss of lean mass which also occurs during 

the normal aging process, possibly due to increased glucocorticoid sensitivity.  

In chapter 3 we investigated the role of the previously described N363S 

polymorphism of the GR gene and the BclI polymorphism in a group of severely obese Italian 

patients. In this group N363S-carriers had a significantly higher BMI, resting energy 

expenditure and food intake compared to noncarriers. Carriers of both the N363S and BclI 

variants had a tendency towards higher systolic and diastolic blood pressures, as well as 

significantly higher total and LDL-cholesterol levels. Based on these and previous data we 

speculate that N363S-carriers who turn obese, may easily become even more obese, which 

might be explained by their hypersensitive insulin response and thus, via activation of 

lipogenesis, more efficient way of fat storage. In addition, simultaneous carriage of N363S and 

BclI polymorphisms, both associated with increased glucocorticoid sensitivity, appears to result 

in a subtle unfavorable cardiovasular risk profile. 
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In chapter 4 we identified a TthIII1 restriction site polymorphism, located in the 

promotor region of the GR gene, as a C/T nucleotide change. This highly frequent 

polymorphism (allelic frequency 31%) was not related to gluocorticoid sensitivity, as tested 

with a dexamethasone suppression test in 209 healthy elderly. We also found no correlations 

between TthIII1 genotype and metabolic parameters or body composition. However, this 

variant appeared to be linked to the ER22/23EK polymorphism. Carriers of both TthIII1 and 

ER22/23EK variant alleles were significantly more resistant to the suppressive effects of 

dexamethasone, and had lower fasting insulin and cholesterol levels compared to carriers of 

only the TthIII1 polymorphism or noncarriers. Thus, carriage of both TthIII1 and ER22/23EK 

polymorphisms was associated with a relative resistance to glucocorticoids, and a healthy 

metabolic profile. 

In chapter 5 we report an association between the ER22/23EK polymorphism of the 

GR gene and a reduced sensitivity to glucocorticoids, which was studied using a 

dexamethasone suppression test in 202 healthy elderly. In addition, carriers of the ER22/23EK 

variant (8.9 %) had lower fasting insulin levels, as well as lower total and LDL-cholesterol 

concentrations. We also found a significantly higher frequency of the ER22/23EK genotype in 

the older half of this population compared to the younger half. This is in line with our findings 

of a relation of the ER22/23EK polymorphism with relative glucocorticoid resistance, resulting in 

a better metabolic condition. 

In chapter 6 we describe the role of the ER22/23EK polymorphism in body 

composition. It is known that body composition is closely related to metabolism Considering the 

findings of the previous chapter we hypothesized that the ER22/23EK polymorphism is also 

related to the regulation of body composition. Therefore, we investigated a cohort, which was 

followed from the age of 13 till 36 years.  In young adult males we found ER22/23EK-carriers 

to be taller, have more lean mass, and greater thigh circumferences (indicator of muscle mass), 

as well as increased muscle strength when compared to noncarriers. This phenotype was 

already present during puberty, however marked differences could only be detected at adult 

age. In females, waist and hip cicumferences tended to be smaller, suggestive of less fatmass, 

but no differences in BMI were found. Thus, the ER22/23EK polymorphism seems to be related 

to a sex-specific, beneficial body composition at young adult age. 

In chapter 7 we investigated whether the ER22/23EK variant is associated with 

longevity or predictors of mortality. Therefore, we studied C-reactive protein (CRP) and 

interleukin-6 (IL-6) levels, as well as cholesterol levels and mortality in 402 men with a mean 

age of 78 years. After a follow-up of 4 years almost 20 % of the noncarriers died, while none of 

the 21 ER22/23EK-carriers had died. CRP levels were significantly lower in ER22/23EK-carriers, 

while IL-6 levels were not related to genotype. CRP levels positively correlated to BMI, total 

fatmass, and trunk fatmass. Total and LDL-cholesterol levels tended to be lower, but not 

significantly, in ER22/23EK-carriers. Thus, the ER22/23EK polymorphism is associated with 
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longevity, as well as with lower CRP levels, which has been shown to be an independent 

predictor of cardiovascular mortality. 

In chapter 8 we studied the effects of the ER22/23EK polymorphism on the brain. 

Glucocorticoids are essential for proper brain functioning and increased levels of cortisol have 

been associated with cognitive impairment and dementia. Therefore, we hypothesized that 

carriers of the ER22/23EK variant might be protected from the lifelong harmful effects of 

glucocorticoids on the brain, due to their relative glucocorticoid resistance. In 6034 elderly from 

the Rotterdam Study we found indeed the ER22/23EK variant to be negatively associated with 

the risk of developing dementia. In addition, in 1011 elderly of the Rotterdam Scan Study we 

found that the presence of cerebral white matter lesions and brain infarctions as well as the 

risk of progression of white matter lesions was decreased in ER22/23EK-carriers. No association 

was found with atrophy of the medial temporal lobe on MRI.  Among non-demented 

participants, ER22/23EK-carriers had a better performance on psychomotor speed tests than 

non-carriers, but no differences were found in memory function between genotypes.These 

results suggest a protective effect of the ER22/23EK polymorphism on the risk of dementia and 

cerebral small vessel disease. 

In chapter 9 we describe the relationship of three GR polymorphisms (ER22/23EK. 

N363S, BclI) with major depression. In depressive patients hyperactivity of the hypothalamic-

pituitary-adrenal (HPA)-axis is a very well known phenomenon, which may play a role in the 

pathophysiology of depression. This dysregulation is related to an impaired negative feedback 

regulation of the glucocorticoid receptor (GR). Because of their inherent differences in 

glucocorticoid function, carriers of the ER22/23EK, N363S and BclI polymorphisms of the GR 

could be expected to be more or less prone to develop a major depression. Therefore, we 

studied 496 depressive inpatients and 496 healthy controls. The frequency of the homozygous 

BclI G allele was higher in depressed patients, and  the ER22/23EK allele was also more 

frequent in unipolar, recurrent depressed patients both compared to noncarriers. In addition, 

ER22/23EK-carriers showed a significantly faster clinical response to antidepressant therapy, as 

well as a trend towards better cognitive functioning during depression. Thus, the BclI GG and 

ER22/23EK genotypes were associated with susceptibility to develop major depression and the 

ER22/23EK variant was also related to a faster response to treatment.  

Chapter 10 contains a general discussion in which the findings described in this 

thesis are put into a broader perspective. The fallacies of conducting association studies are 

discussed, as well as the clinical relevance of our observations, factors that in general 

determine body composition and aspects of evolution. Finally, we conclude that three 

polymorphisms in the GR gene are associated with altered GC sensitivity and result in a wide 

variety of phenotypic signs, which partially explain an individuals genetically determined 

tendency to a certain body composition, as well as metabolic and mental status. 
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Samenvatting 

 

Als reactie op lichamelijke of psychische stress worden in het menselijk lichaam 

stresshormonen, zg glucocorticoïden, door de bijnier aangemaakt. In normale omstandigheden 

zijn deze hormonen ook aanwezig in de circulatie, echter in lagere concentraties. Het 

belangrijkste glucocorticoïd voor de mens is cortisol. De effecten van glucocorticoïden worden 

hoofdzakelijk gemedieerd door de glucocorticoïd receptor, welke in bijna alle weefsels in het 

lichaam aanwezig is. Dit proefschrift gaat over het gen dat codeert voor de glucocorticoïd 

receptor (GR).  

Zoals beschreven in hoofdstuk 1 is het bekend dat de gevoeligheid voor 

glucocorticoïden aanzienlijk varieert tussen normale individuen. Wanneer glucocorticoïden 

therapeutisch worden toegepast is er eveneens sprake van een enorme variabiliteit in de 

klinische respons en mate van bijwerkingen. In dit hoofdstuk worden de achtergronden met 

betrekking tot gevoeligheid voor glucocorticoïden, enkele polymorfismen in de GR en de relatie 

van deze natuurlijke genetische varianten met lichamelijke en mentale condities beschreven.  

Het doel van dit proefschrift was om frequent voorkomende genetische polymorfismen van de 

glucocorticoïd receptor te identificeren en om inzicht te verkrijgen in hun rol in glucocorticoïd 

gevoeligheid, metabolisme, lichaamssamenstelling, dementie en depressie. 

In hoofdstuk 2 hebben we de mutatie van het BclI polymorfisme van het GR gen 

geïdentificeerd als zijnde een C/G nucleotide verandering. In een groep van 191 gezonde 

ouderen hebben we de relatie van deze zeer frequent voorkomende variant (allel frequentie 

37%) met glucocorticoïd gevoeligheid onderzocht met een dexamethason suppressie test. 

Homozygote en heterozygote G allel-dragers bleken gevoeliger (dosis-allel effect) voor de 

suppressieve effecten van dexamethason. In een tweede grote studiepopulatie vonden we dat 

deze G-allel dragers een lagere body mass index (BMI) hadden. Dit werd bevestigd in een 

derde studiepopulatie met gezonde oudere mannen. In deze laatste populatie hebben we 

tevens lichaamssamenstelling onderzocht. De hoeveelheid vetmassa verschilde niet tussen de 

verschillende genotypes, maar de hoeveelheid vetvrije massa (m.n. spiermassa) daarentegen 

was lager in zowel homozygote als heterozygote G-allel dragers. Dit suggereert dat G-allel 

dragers, mogelijk ten gevolge van een verhoogde glucocorticoïd gevoeligheid, op oudere 

leeftijd extra veel spiermassa verliezen, hetgeen normaliter in enige mate ook al optreedt 

tijdens het verouderingsproces.  

In hoofdstuk 3 hebben we de rol van het eerder beschreven N363S polymorfisme 

van het GR gen en het BclI polymorfisme onderzocht in een groep Italiaanse patiënten met 

morbide obesitas. In deze groep bleken N363S-dragers een significant hogere BMI, hoger 

rustmetabolisme en grotere voedselinname te hebben vergeleken met niet-dragers. Dragers 

van zowel het N363S als het BclI polymorfisme neigden naar hogere systolische en diastolische 

bloeddrukken, alsmede significant hogere totaal en LDL-cholesterol concentraties in het bloed. 



Summary/ Samenvatting   

 

 
191 

Gezien deze gegevens alsmede eerder beschreven data zou het kunnen dat N363S-dragers die 

obees worden, mogelijk gemakkelijk nog obeser worden. Dit zou wellicht verklaard kunnen 

worden door hun hypersensitieve insuline respons en, via activatie van de lipogenese, 

efficiëntere vetstapeling. Daarnaast blijkt uit deze studie dat het simultane dragerschap van de 

N363S en BclI genvarianten, beide geassocieerd met verhoogde glucocorticoïd sensitiviteit, lijkt 

te resulteren in een iets ongunstiger cardiovasulair risicoprofiel. 

In hoofdstuk 4 hebben we een TthIII1 polymorfisme, gelocaliseerd in de promotor 

regio van het GR gen, geïdentificeerd als een C/T nucleotide verandering. Dit frequent 

voorkomende polymorfisme (allel frequentie 31%) was niet gerelateerd aan gluocorticoïd 

gevoeligheid, hetgeen  gemeten werd middels een dexamethason suppressie test in 209 

gezonde ouderen. Tevens hebben we geen correlaties gevonden tussen TthIII1 genotype en 

metabole parameters of lichaamssamenstelling. Deze variant bleek echter partieel gekoppeld 

aan het ER22/23EK polymorfisme. Dragers van zowel de TthIII1 als ER22/23EK variante allelen 

waren significant  resistenter voor de suppressieve effecten van dexamethason, en hadden 

lagere nuchtere insuline en cholesterol concentraties vergeleken met dragers van alleen het 

TthIII1 polymorfisme of niet-dragers. Geconcludeerd kan worden dat dragerschap van beide 

polymofismen (zowel TthIII1 als ER22/23EK) geassocieerd is met een relatieve resistentie voor 

glucocorticoïden en een gezond metabool profiel. 

In hoofdstuk 5 beschrijven we een associatie tussen het ER22/23EK polymorfisme 

van het GR gen en een verminderde gevoeligheid voor glucocorticoïden, hetgeen getest is 

middels een dexamethason suppressie test in 202 gezonde ouderen. Daarnaast bleek dat 

dragers van de ER22/23EK variant (8.9 %) lagere insuline spiegels en lagere totaal en LDL-

cholesterol concentraties hadden. Ook vonden we een significant hogere frequentie van het 

ER22/23EK genotype in de oudste helft van deze populatie vergeleken met de jongste helft. Dit 

komt overeen met onze bevindingen van een relatie van het ER22/23EK polymorfisme met een 

relatieve glucocorticoïd resistentie, hetgeen resulteert in een betere metabole conditie. 

In hoofdstuk 6 beschrijven we de rol die het ER22/23EK polymorfisme speelt in 

lichaamssamenstelling. Het is bekend dat lichaamssamenstelling nauw gerelateerd is aan 

metabolisme. Gezien de bevindingen in het voorgaande hoofdstuk was onze hypothese dat het 

ER22/23EK polymorfisme tevens gerelateerd is aan de regulatie van lichaamssamenstelling. Om 

dit te bestuderen hebben we een cohort onderzocht, dat gevolgd en getest werd van de leeftijd 

van 13 jaar tot 36 jaar. In jong volwassen mannen vonden we dat ER22/23EK-dragers 

gemiddeld langer zijn, meer spiermassa en een grotere dijbeenomtrek (ook een indicator van 

hoeveelheid spiermassa) hebben. Daarnaast bleken deze mannelijke dragers ook sterker te zijn 

dan niet-dragers. Dit fenotype was al gedurende de puberteit in enige mate waarneembaar, 

echter duidelijke verschillen traden pas op volwassen leeftijd op. In vrouwelijke ER22/23EK-

dragers vonden we een neiging tot kleinere heup- en tailleomtrek, hetgeen suggestief is voor 

minder vetmassa, echter vonden we geen verschillen in BMI. Concluderend is het ER22/23EK 
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polymorfisme geassocieerd met een sexe-specifieke, gunstige lichaamssamenstelling op jong 

volwassen leeftijd. 

In hoofdstuk 7 hebben we onderzocht of de ER22/23EK variant geassocieerd is met  

overleving en voorspellers van mortaliteit. In dit kader hebben we de C-reactive protein (CRP) 

en interleukin-6 (IL-6) concentraties, evenals cholesterol concentraties en mortaliteit in 402 

mannen met een gemiddelde leeftijd van 78 jaar onderzocht. Na een periode van 4 jaar was 

ca. 20 % van de niet-dragers overleden, terwijl geen enkele van de 21 ER22/23EK-dragers was 

overleden. De CRP concentraties waren significant lager in ER22/23EK-dragers, terwijl de IL-6 

concentraties niet verschilde per genotype. De CRP concentraties waren ook positief 

gecorreleerd met BMI, de totale hoeveelheid vetmassa en rompvetmassa. Totale and LDL-

cholesterol concentraties waren enigszins, maar niet significant, lager in ER22/23EK-dragers. 

Geconcludeerd kan worden dat het ER22/23EK polymorfisme geassocieerd is met overleving, 

alsmede met een lagere CRP concentratie, waarvan eerder gebleken is dat het een 

onafhankelijke voorspeller is van cardiovasculaire mortaliteit. 

In hoofdstuk 8 hebben we de effecten van het ER22/23EK polymorfisme op de 

hersenen bestudeerd. Glucocorticoïden zijn essentieel voor het goed functioneren van het 

brein. Verhoogde cortisol concentraties zijn gerelateerd aan cognitieve stoornissen en 

dementie. Onze hypothese was dat dragers van de ER22/23EK genvariant enigszins beschermd 

zouden zijn voor de levenslange schadelijke effecten van glucocorticoïden op de hersenen, 

vanwege hun relatieve glucocorticoïd resistentie. In 6034 ouderen van de Rotterdam Studie 

onderzochten we of het ER22/23EK polymorfisme geassocieerd is met dementie. Daarnaast 

bestudeerden we in 1011 ouderen van de Rotterdam Scan Studie de relatie van dit 

polymorfisme met structurele hersenafwijkingen op MRI. Conform onze hypothese vonden we 

dat de ER22/23EK variant negatief geassocieerd was met het risico om dementie te 

ontwikkelen. Daarnaast bleken witte stofafwijkingen en herseninfarcten minder frequent voor 

te komen in ER22/23EK-dragers. Ook het risico op progressie van witte stofafwijkingen was 

verlaagd bij dit genotype. We vonden geen relatie met atrofie van de mediale temporaalkwab 

op MRI. Bij niet-demente deelnemers vonden we dat ER22/23EK-dragers beter scoorden op 

psychomotore snelheidstesten dan niet-dragers. Er waren echter geen verschillen in 

geheugenfunctie tussen de genotypes. Deze resultaten suggereren een beschermend effect 

van het ER22/23EK polymorfisme op het risico op cerebrovasculaire ziekte en met name op 

dementie. 

In hoofdstuk 9 beschrijven we de relatie van drie GR polymorfismen (ER22/23EK, 

N363S, BclI) en depressie. In depressieve patiënten is hyperactiviteit van de hypothalamus-

hypofyse-bijnier as een bekend fenomeen, wat mogelijk een rol speelt in de pathofysiologie van 

depressie. Deze dysregulatie is gerelateerd aan een verstoorde regulatie van de negatieve 

terugkoppeling (feedback) van de GR. Vanwege hun verschillen in glucocorticoïd effect zouden 

dragers van de ER22/23EK, N363S en BclI polymorfismen van de GR meer of juist minder risico 
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kunnen hebben om een ernstige depressie te ontwikkelen. Om dit te onderzoeken hebben we 

496  depressieve patiënten en 496 gezonde controles onderzocht. De frequentie van het 

homozygote BclI G allel was hoger in depressieve patiënten dan in controles. Het ER22/23EK 

allel kwam ook frequenter voor bij unipolaire, recidiverend depressieve patiënten. Daarnaast 

was er bij ER22/23EK-dragers sprake van een significant snellere klinische respons op 

antidepressieve therapie, evenals een tendens tot een beter cognitief functioneren gedurende 

een depressieve episode. Hieruit kan geconcludeerd worden dat de BclI GG en ER22/23EK 

genotypes geassocieerd zijn met een verhoogd risico op het ontwikkelen van een ernstige 

depressie. De ER22/23EK variant bleek tevens gerelateerd aan een snellere respons op 

behandeling.  

Hoofdstuk 10 bevat een algemene discussie, waarin de bevindingen beschreven in 

dit proefschrift in een bredere context worden geplaatst. De valkuilen van het uitvoeren van 

associatie studies worden besproken, evenals de klinische relevantie van onze bevindingen, 

factoren die in het algemeen bijdragen aan de regulatie van lichaamssamenstelling en enkele 

aspecten van de evolutie. Tot slot wordt geconcludeerd dat drie polymofismen van het GR gen 

geassocieerd zijn met veranderde glucocorticoïd gevoeligheid en resulteren in een scala van 

fenotypische symptomen, die gedeeltelijk de individuele, genetisch bepaalde neiging tot een 

bepaalde lichaamssamenstelling en metabole en mentale conditie kunnen verklaren. 
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Eindelijk een stukje tekst dat niet wetenschappelijk verantwoord hoeft te zijn, maar wat toch 

niet mag ontbreken in een proefschrift. Sterker nog, ik denk dat het een van de belangrijkste 

stukken is van een proefschrift, want het is een grote illusie om onderzoek alleen te doen. Heel 

veel heb ik te danken aan mensen om me heen, om te beginnen met: 

 Prof. Dr. S.W.J. Lamberts, beste Steven, onnoemelijk veel dank ben ik verschuldigd 

voor de fantastische begeleiding, de enorme stimulatie om steeds weer aan nieuwe projecten 

te beginnen, je enthousiasme, de steun in periodes van tegenslagen en het gevoel dat ik kreeg 

dat ik mezelf mocht ontplooien. Ik heb enorm genoten van alle kansen die ik kreeg om ons 

werk ook in het buitenland te presenteren en ben me ervan bewust dat mijn 

onderzoeksperiode er volkomen anders uit had kunnen zien zonder zo’n geweldige promotor. 

 Dr J.W. Koper, beste Jan Willem, toen ik met het onderzoek begon wist ik niet eens 

van het bestaan van het Glucocorticoid Receptor gen af. Enorm bedankt voor het wegwijs 

maken in de wondere wereld die genetica heet, je geduld met een simpele dokter die aan het 

rommelen slaat met genotyperen, het kritische lezen van alle manuscripten en je geweldige 

hulp bij het opzetten en bedenken van nieuwe, efficiëntere technieken om al het labwerk voor 

elkaar te krijgen. 

 Prof. dr. J.A. Romijn, beste Hans, hartelijk dank voor het snelle beoordelen van mijn 

proefschrift en voor de leuke uurtjes in de kroeg op buitenlandse congressen, waar mij is 

gebleken dat Leidenaren ook heel gezellig zijn! 

Prof. dr. D.E. Grobbee en Prof. dr. W.M.Wiersinga, veel dank voor het zitting nemen 

in mijn promotiecommissie en het snelle lezen van mijn proefschrift. 

 Prof. dr. H.A.P. Pols, Prof. dr. F.H. de Jong en Dr. A. O. Brinkmann, beste Huib, Frank 

en Albert, ik heb jullie hulp bij het aandragen van ideeën en de commentaren op de 

manuscripten heel erg gewaardeerd. Hartelijk dank voor de tijd die jullie hebben vrijgemaakt 

voor de vele besprekingen. 

 Dr J.A.M.J.L. Janssen, beste Joop, mijn allereerste stapjes in het lab heb ik onder 

jouw begeleiding gedaan als student tijdens mijn keuze-onderzoek.Van jou kwamen vaak de 

meest briljante ideeën en als een soort orakel heb je me geholpen bij de discussiepunten waar 

ik tegenaan liep bij het schrijven van artikelen. Heel erg bedankt ook voor de gezellige, maar 

ook nuttige uurtjes op het lab en de lol met jou en Henk tijdens de vele keren dat we samen 

gegeten hebben, omdat het toch weer eens laat werd…. 

Dr A.G. Uitterlinden, beste André, als genetisch expert hebben we met zijn allen 

dankbaar van je kennis en technische vernieuwingsdrang gebruikt gemaakt. Ik voel me door 

jou wel iemand uit de ouwe doos, die nog enkele jaren geleden DNA sample voor sample, 

maximaal 100 op een dag stond te genotyperen, terwijl jij nu technieken in handen hebt 
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waarmee het machinaal per duizenden tegelijk mogelijk is. Dank ook voor je kritische inbreng 

bij de manuscripten. 

 Prof. dr. M.M.B. Breteler, beste Monique, dankzij jou heb ik geleerd dat goede 

artikelen veel tijd kosten, maar dat het uiteindelijk iets heel moois kan opleveren. Hartelijk dank 

voor alle goede ideeën bij de dementiestudie. Frank Jan de Jong, bedankt voor de 

samenwerking en de vele tijd die we achter de computer hebben doorgebracht. Zelfs tussen de 

co-schappen door ben je volop aan het analyseren geweest. Prof. dr. A. Hofman, Prof. dr. P.J. 

Koudstaal, Niels Prins, Ewoud van Dijk en Tom den Heijer, veel dank voor jullie bijdrage aan de 

GR-dementie studie. 

 Prof. dr. F. Holsboer, Dr E.B. Binder, Dr S. Modell and Dr M. Ising, thank you so much 

for the wunderful collaboration on the depression studies and the great input you all had to 

accomplish the depression manuscript. Although I am not a psychiatrist you definately 

stimulated my interest in the human brain. 

 Prof. dr.A. Liuzzi and Dr A.M. Di Blasio, together we wrote one of the first papers of 

this thesis. Thank you very much for the collaboration on the obesity studies. 

 Prof. dr. D. Helhammer, Dr S. Wüst and Dr R. Kümsta, it was great to collaborate with 

you on the psychological stress studies. Thanks for all your efforts, and I am looking forward to 

our future collaborative studies. 

 Prof. dr. H.A. Delemarre-van de Waal, Prof. dr. H.C.G. Kemper, Paul Voorhoeve en 

Saskia te Velde: een levend voorbeeld dat Amsterdammers en Rotterdammers prima samen 

kunnen werken. Het was erg leuk om af en toe af te reizen naar de VU en daar samen achter 

de computer te zitten stoeien met data, waar we nu mooi de vruchten van kunnen plukken. 

Saskia, jij bent inmiddels al gepromoveerd en hebt ingezien dat werken in Rotterdam ook leuk 

kan zijn (terecht!). Succes met je nieuwe baan! Paul, met jou heb ik heel wat momenten 

doorgebracht in de rattenstal, waar we hebben staan knoeien met DNA op gel brengen en jij zo 

ook het trucje van de ouderwetse genotyperingen geleerd hebt. Op die momenten hebben we 

vele “life issues” besproken en heb ik veel lol met je gehad. Bedankt voor die leuke tijd! 

 

Mijn maatjes en collega-onderzoekers op het lab:  

Virgil Dalm, samen begonnen met het ontdekken wat promoveren inhield (vaak in je grappen 

trappen, maar gelukkig jij ook in de mijne, rondreizen na congressen, maar ook de 

beslommeringen delen die een onderzoek met zich mee brengt). Bedankt dat je mijn paranimf 

wilt zijn! Henk Russcher, mijn andere paranimf, van jou heb ik pas geleerd wat 

doorzettingsvermogen is, thanks voor alle gezellige uurtjes en het samen zwoegen tot vaak 

veel te laat op het lab. Gelukkig blijf je na je promotie nog binnen deze muren en ik hoop nog 

veel van je mee te maken als klinisch chemicus. Pauline Smit, voor jou heb ik veel bewondering 

voor je ambities om na je promotie nog een studie geneeskunde te gaan beginnen en tussen 

het artikelen schrijven door nog allemaal examens daarvoor doen. Ik weet zeker dat het je 
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allemaal goed af zal gaan. Als de beste kennen we allemaal elkaars koffie- en theerecepten, 

wat een niet te onderschatten bijdrage is aan promotieonderzoek doen. Erica van den Akker, ik 

heb bewondering voor je kordate aanpak van je studies en voor wat je in korte tijd allemaal 

bewerkstelligd hebt. Je bent absoluut een aanwinst voor de groep. Ik hoop dat we nog veel 

kunnen blijven samen werken met de lopende studies. Ik denk niet dat die slappe lach met jou 

ooit nog verdwijnt. Ingrid Rietveld, ik blijf erbij dat Breda veel te ver weg is, maar je blijft een 

supervriendin. Dank voor al je steun en gezelligheid tijdens het onderzoek, maar wat hopelijk 

nooit zal stoppen. En de beide Mariekes natuurlijk niet te vergeten: jullie kwamen op het lab 

toen ik inmiddels in de kliniek begonnen was, maar het is leuk dat jullie bij de groep gekomen 

zijn en ik weet zeker dat het hele mooie dingen zal gaan opleveren. De anderen van het neuro-

endo lab: Marlijn Waaijers en Diana Mooij (Mai en Dai…), met jullie heb ik in vele gezellige 

gesprekjes de echt belangrijke zaken van het leven besproken, Richard Feelders, Annewieke 

van den Beld, Leo Hofland, Peter van Koetsveld, Joost van den Hoek, Giovanni Vitale, Nanette 

Huizenga, Ellen Roks, Piet Uitterlinden, bedankt voor de samenwerking en gezelligheid. Carine 

en Lenie, bedankt voor jullie secretariële ondersteuning. Van jullie dieetideeën ben ik nog 

steeds niet overtuigd, maar het heeft jullie gezelligheid gelukkig niet geschaad. 

 Mijn andere paranimf en allerliefste zussie Annemarie, als voorbeeld in het doen van 

onderzoek durf ik je al bijna niet te nemen met al die briljante resultaten van je. Ik heb enorm 

veel bewondering voor je en heeeeel veel dank voor al die momenten waarop je me fantastisch 

geholpen hebt (zowel in praktische zin als mentaal) en dat geldt natuurlijk ook voor Jeroen, 

een betere zwager kan ik me niet wensen (en dat zegt wat als een internist in opleiding dat 

zegt over een chirurg in opleiding!). 

 Mijn ouders, (schoon) familie en alle vrienden wil ik heel graag bedanken voor alle 

steun en afleiding de afgelopen jaren: pa en ma, zonder enige druk te zetten hebben jullie me 

altijd gestimuleerd om te doen wat ik leuk vind. Paul, Julia, André, Ineke, Pieter, Eef, Leonie, 

bedankt voor alle uurtjes van ontspanning en gezelligheid. 

 Tenslotte wil ik Thomas bedanken, jij bent degene die lijdzaam hebt moeten zien hoe 

alle uren die we leuk samen hadden kunnen doorbrengen opgingen in veel te veel werken, 

maar je bent altijd een geweldige steun voor me geweest! Ik ben dolgelukkig dat we samen in 

het huwelijksbootje zijn gestapt en de huwelijksreis was dan ook een oase van ontspanning en 

lol in de laatste hectische maanden van het onderzoek. Jij laat me zien dat er nog andere 

dingen dan promoveren belangrijk zijn in het leven.  
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